Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-05T08:36:07.142Z Has data issue: false hasContentIssue false

The Influence of Humidity on the Structure of MoS2(PEO)1.3 Nanocomposites

Published online by Cambridge University Press:  21 March 2011

Philippe Westreich
Affiliation:
Department of Physics, Simon Fraser University Burnaby, B.C. V5A 1S6, Canada
Datong Yang
Affiliation:
Department of Physics, Simon Fraser University Burnaby, B.C. V5A 1S6, Canada
Robert F. Frindt
Affiliation:
Department of Physics, Simon Fraser University Burnaby, B.C. V5A 1S6, Canada
Get access

Abstract

Layered nanocomposites of molybdenum disul.de (MoS2) andp oly (ethylene oxide) (PEO) were studied using x-ray di.raction of powder and oriented thin.lm samples. Thermal gravimetric analysis provided information on the composition of the material. The e.ects of the molecular weight of PEO andthe atmospheric relative humidity on the structure were also investigated. A basal plane spacing of 14.3 °, corresponding to an expansion of 8.1 ° between MoS2 layers, was foundfor dry samples, in agreement with the literature. At about 30% humidity, the expansion increases to 10.6°. This increase corresponds approximately to the thickness of one monolayer of water. The spacing is constant until around80% humidity, when the expansion begins to increase again, reaching up to 25 ° near 100% humidity. X-ray coherence lengths in the direction perpendicular to the planes averaged13, 7 and 2 MoS2 layers for the dry, 58% humid and nearly 100% humid samples, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schollhorn, R., and Weiss, A. J. Less-Common Metals, 36, 229236 (1974).Google Scholar
2. Gonzalez, G., Santa Ana, M. A., and Benavente, E. Electrochimica Acta, 43, Nos. 10–11, 13271332 (1998).Google Scholar
3. Bissessur, R., Schindler, J. L., Kannewurf, C. R., and Kanatzidis, M. Mol. Cryst. Liq. Cryst., 245, 249254 (1994).Google Scholar
4. Lemmon, J. P., Wu, J., Oriakhi, C., and Lerner, M. M. Electrochimica Acta, 40, No. 13–14, 22452249 (1995).Google Scholar
5. Yang, D., Westreich, P., and Frindt, R.F. NanoStructured Materials, 12, 467470 (1999).Google Scholar
6. Frindt, R. F., and Yang, D. Mol. Cryst. Liq. Cryst., 311, 367375 (1998).Google Scholar
7. Dines, M. B. Mat. Res. Bull., 10, 287292 (1975).Google Scholar
8. Joensen, P., Frindt, R. F., and Morrison, S. R. Mat. Res. Bull., 21, 457461 (1986).Google Scholar
9. Joensen, P., Crozier, E. D., Alberding, N., and Frindt, R. F. J. Phys. C: Solid State Phys. 20, 40434053 (1987).Google Scholar
10. Bissessur, R., Kanatzidis, M. G., Schindler, J. L., and Kannewurf, C. R. J. Chem. Soc., Chem. Commun., 15821585 (1993).Google Scholar
11. Ruiz-Hitzky, E., Jimenez, R., Casal, B., Manriquez, V., Santa Ana, A., and Gonz alez, G. Adv. Mater., 5, No. 10, 738741 (1993).Google Scholar
12. Lemmon, J. P., and Lerner, M. M. Chem. Mater., 6, 207210 (1994).Google Scholar
13. Benavente, E., and Gonzalez, G. Bol. Soc. Chil. Quim., 42, 555559 (1997).Google Scholar