Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-09T01:02:35.161Z Has data issue: false hasContentIssue false

Phase relation, structure, and properties of borate MgYB5O10 in MgO–Y2O3–B2O3 system

Published online by Cambridge University Press:  02 May 2017

Jing Zhang
Affiliation:
School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China Education Ministry Key Laboratory of Non-ferrous Materials Science and Engineering, Central South University, Changsha 410083, China
Xiaoma Tao
Affiliation:
College of Physical Science and Technology, Guangxi University, Nanning 530004, China
Gemei Cai*
Affiliation:
School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China Education Ministry Key Laboratory of Non-ferrous Materials Science and Engineering, Central South University, Changsha 410083, China
Zhanpeng Jin
Affiliation:
School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China Education Ministry Key Laboratory of Non-ferrous Materials Science and Engineering, Central South University, Changsha 410083, China
*
a)Author to whom correspondence should be addressed. Electronic mail: caigemei@csu.edu.cn

Abstract

In the investigation of MgO–Y2O3–B2O3 system, six three-phase regions, five binary compounds, and one ternary compound MgYB5O10 were confirmed in the subsolidus phase relations. Single-phase powder sample of MgYB5O10 was successfully prepared through solution synthesis method. By using the Rietveld method from the step-scanning X-ray powder diffraction data, the crystal structure of MgYB5O10 was determined. It crystallizes in the monoclinic system with the space group P121/c1 and lattice parameters a = 8.5113(2) Å, b = 7.5892(2) Å, c = 12.2460(3) Å, β = 130.200(1)°, and Z = 4. The infrared spectrum of MgYB5O10 at room temperature demonstrates the existence of BO3 and BO4 groups. The UV–visible spectrum shows a wide absorption band within the range of 190–400 nm, while the absorption in the visible region is negligible. According to the electronic structure derived by first-principles calculations, MgYB5O10 is an insulator with a wide indirect energy band gap of about 5.95 eV. Layered structural characteristics, existence of one-dimensional YnO8n+2 chains, and the large band gap should be the immanent reason why MgYB5O10-based materials have exhibited outstanding performances in the luminescence field.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdullaev, G. K. (1976). “Crystal structure of the double metaborate of neodymium and cobalt NdCo(BO2)5 ,” J. Struct. Chem. 17, 961963.Google Scholar
Abdullaev, G. K., Mamedov, K. S., and Dzhafarov, G. G. (1975a). “Crystal structure of LaCo(BO2)5 ,” J. Struct. Chem. 16, 6165.Google Scholar
Abdullaev, G. K., Mamedov, K. S., and Dzhafarov, G. G. (1975b). “Crystal structure of the double metaborate of samarium and cobalt SmCo(BO2)5 ,” Sov. Phys. Crystallogr. 19, 457459.Google Scholar
Алиев, О. А. (2007). “Двойные метабораты редкоземельных элементов и кобальта состава LnCo(BO2)5 ,” Известия высших учебных заведений. Химия и химическая технология 50, 4447.Google Scholar
Bartl, H. and Schuckmann, W. (1966). “Zur Struktur des Magnesiumdiborates, MgO·2B3O2 ,” NeuesJahrb. Miner. Monatsh. 1966, 142148.Google Scholar
Bazarova, Z. G., Nepomnyashchikh, A. I., Kozlov, A. A., Bogdan-Kurilo, V. D., Bazarov, B. G., Subanakov, A. K., and Kurbatov, R. V. (2007). “Phase equilibria in the system Li2O–MgO–B2O3 ,” Russ. J. Inorg. Chem. 52, 19711973.CrossRefGoogle Scholar
Becker, P. (1998). “Borate materials in nonlinear optics,” Adv. Mater. 10, 979992.3.0.CO;2-N>CrossRefGoogle Scholar
Bosenberg, W. R., Pelouch, W. S., and Tang, C. L. (1989). “High-efficiency and narrow-linewidth operation of a two-crystal β-BaB2O4 optical parametric oscillator,” Appl. Phys. Lett. 55, 19521954.CrossRefGoogle Scholar
Boultif, A. and Louër, D. (2004). “Powder pattern indexing with the dichotomy method,” J. Appl. Crystallogr. 37, 724731.Google Scholar
Brown, I. D. and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database,” Acta Crystallogr. B41, 244247.CrossRefGoogle Scholar
Busche, S. and Bluhm, K. (1996). “Synthesis and crystal structure of rare earth zinc borates LnZn(B5O10) with Ln= Ce, Nd, Tb,” Z. Naturforsch. B 51, 671676.CrossRefGoogle Scholar
Cai, G. M., Chen, X. L., Wang, W. Y., Lou, Y. F., Liu, J., Zhao, J. T., and Chen, H. H. (2008). “A new promising scintillator Ba3InB9O18 ,” J. Solid State Chem. 181, 646651.Google Scholar
Campa, J. A., Cascales, C., Puebla, E. G., Mira, J., Monge, M. A., Rasines, I., Rivas, I., and Valero, C. R. (1995). “Crystal structure and magnetic properties of CoR(BO2)5 (R = Y, Gd) and NiR(BO2)5 (R = Nd, Gd),” J. Alloy. Compd. 225, 225229.CrossRefGoogle Scholar
Chadeyron, G., El-Ghozzi, M., Mahiou, R., Arbus, A., and Cousseins, J. C. (1997). “Revised structure of the orthoborate YBO3 ,” J. Solid State Chem. 128, 261266.CrossRefGoogle Scholar
Chen, C. T., Wu, Y. C., and Li, R. K. (1990). “The development of new NLO crystals in the borate series,” J. Cryst. Growth 99, 790798.Google Scholar
Chen, S. J., Pan, S. L., Wu, H. P., Han, J., Zhang, M., and Zhang, F. F. (2012). “Synthesis, crystal structure and optical properties of a new orthorhombic phase, Na3ZnB5O10 ,” J. Mol. Struct. 1021, 118122.Google Scholar
Chen, X., Li, M., Zuo, J., Chang, X., Zang, H., and Xiao, W. (2007). “Syntheses and crystal structures of two pentaborates, Na3CaB5O10 and Na3MgB5O10 ,” Solid State Sci. 9, 678685.CrossRefGoogle Scholar
Ding, X. (1989). “Luminescence and excitation spectra of Ce3+-Tb3+ ions co-doped in the LnMgB5O10 system,” J. Less Common Met. 148, 393397.Google Scholar
Fan, J. M., Lin, Z. B., Zhang, L. Z., and Wang, G. F. (2006). “Structure of GdMg(BO2)5 crystal,” Chin. J. Struct. Chem. 25, 709713.Google Scholar
Fletcher, B. L., Stevenson, J. R., and Whitaker, A. (1970). “Phase equilibria in the system CaO-MgO-B2O3 at 900 °C,” J. Am. Ceram. Soc. 53, 9597.CrossRefGoogle Scholar
Ghosh, B. and Gupta, A. (2015). “Effect of defects on the electronic properties of WS2 armchair nanoribbon,” J. Semicond. 36, 01300310130034.CrossRefGoogle Scholar
Guo, G. C., Cheng, W. D., Chen, J. T., Huang, J. S., and Zhang, Q. E. (1995). “Triclinic Mg2B2O5 ,” Acta Crystallogr. C51, 351353.Google Scholar
Hong, G. Y. (2011). Rare Earth luminescent Materials: Fundamentals and Applications (Science Press, Beijing). (in Chinese).Google Scholar
Hu, Z. G., Higashiyama, T., Yoshimura, M., Yap, Y. K., Mori, Y., and Sasaki, T. (1998). “A new nonlinear optical borate crystal K2Al2B2O7 (KAB),” Jpn. J. Appl. Phys. 37, 10A.CrossRefGoogle Scholar
Hu, Q., Wang, L., Huang, Z., and Fang, Z. (2015). “Tunable single-phase white-light-emitting Ba2Mg(BO3)2: Ce3+, Na+, Tb3+, Eu2+ phosphor based on energy transfer,” Ceram. Int. 41, 89888995.Google Scholar
Jiang, X. X., Molokeev, M. S., Gong, P. F., Yang, Y., Wang, W., Wang, S. H., Wu, S. F., Wang, Y. X., Huang, R. J., Li, L. F., Wu, Y. C., Xing, X. R., and Lin, Z. S. (2016). “Near-zero thermal expansion and high ultraviolet transparency in a borate crystal of Zn4B6O13 ,” Adv. Mater. 28, 7936–7940. CrossRefGoogle Scholar
Jiao, Z. W., Wang, R. J., Wang, X. Q., Shen, D. Z., and Shen, G. Q. (2010). “LaZnB5O10, the first lanthanum zinc borate,” Acta Crystallogr. E66, i1.Google Scholar
Kellner, T., Heine, F., and Huber, G. (1997). “Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiIO3, β-BaB2O4, and LiB3O5 ,” Appl. Phys. B 65, 789792.Google Scholar
Knitel, M. J., Dorenbos, P., and Van Eijk, C. W. E. (2000). “Photoluminescence, and scintillation/thermoluminescence yields of several Ce3+ and Eu2+ activated borates,” Nucl. Instrum. Methods A 443, 364374.Google Scholar
Kong, F., Huang, S. P., Sun, Z. M., Mao, J. G., and Cheng, W. D. (2006). “Se2(B2O7): a new type of second-order NLO material,” J. Am. Chem. Soc. 128, 77507751.CrossRefGoogle ScholarPubMed
Kuzel, H. J. (1964). “Investigation of the MgO-B2O3 system: synthesis and x-ray study of the compound MgO·2B2O3 ,” Neues Jahrb. Mineral. Monatsh. 12, 357360.Google Scholar
Levin, E. M., Roth, R. S., and Martin, J. B. (1961). “Polymorphism of ABO3 type rare earth borates,” Am. Mineral. 46, 10301055.Google Scholar
Li, X. Z., Chen, X. L., Wu, L., Cao, Y. G., Zhou, T., and Xu, Y. P. (2004). “Ba3YB3O9: phase transition and crystal structure,” J. Alloy Compd. 370, 5358.CrossRefGoogle Scholar
Li, H. K., Cai, G. M., Fan, J. J., Jin, Z. P., Zhou, T. T., and Chen, X. L. (2013). “Crystal structures of two novel borate compounds MgInBO4 and MgIn7/8B7/8O29/8 ,” J. Solid State Chem. 202, 262268.CrossRefGoogle Scholar
Lou, Y. F., Li, D. D., Li, Z. L., Zhang, H., Jin, S. F., and Chen, X. L. (2015). “Unidirectional thermal expansion in edge-sharing BO4 tetrahedra contained KZnB3O6 ,” Sci. Rep. 5, 10996.CrossRefGoogle ScholarPubMed
López, R. and Ricardo, G. (2012). “Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study,” J. Sol-gel Sci. Technol. 61, 17.Google Scholar
Mutluer, T. and Timucin, M. (1975). “Phase equilibria in the system MgO–B2O3 ,” J. Am. Ceram. Soc. 58, 196197.CrossRefGoogle Scholar
Peterson, G. A. (1999). Studies on New Inorganic Solid-State Borates and Oxoanion Fluorides (Oregon State University, Oregon, Corvallis).Google Scholar
Rietveld, H. M. (1967). “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta Crystallogr. 22, 151152.CrossRefGoogle Scholar
Sadanaga, R. (1948). “The crystal structure of kotoite Mg3B2O6 ,” X-Rays 5, 27.Google Scholar
Sasaki, T., Mori, Y., Yoshimura, M., Yap, Y. K., and Kamimura, T. (2000). “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Mater. Sci. Eng. R: Rep. 30, 154.CrossRefGoogle Scholar
Saubat, B., Vlasse, M., and Fouassier, C. (1980). “Synthesis and structural study of the new rare earth magnesium borates LnMgB5O10 (Ln = La,…, Er),” J. Solid State Chem. 34, 271277.CrossRefGoogle Scholar
Schaefer, J. and Bluhm, K. (1995a). “CuTb[B5O10]: Das erste “Metaborat” mit ${}_\infty ^1 [B_5 O_{10} ]^{5 -} $ einem Anion,” Z. Anorg. Allg. Chem. 621, 567570.Google Scholar
Schaefer, J. and Bluhm, K. (1995b). “Synthesis and crystal structure of compounds of the type CuM[B5O10] (M = Tm3+, Lu3+),” Z. Naturforsch. B 50, 762766.CrossRefGoogle Scholar
Shi, Q., You, F., Huang, S., Cui, J., Huang, Y., and Tao, Y. (2016). “Host sensitization of Tb3+ through Gd3+ in Na3Gd(BO3)2: Tb3+ ,” J. Alloy. Compd. 654, 441444.CrossRefGoogle Scholar
Wang, L. L. and Wang, Y. H. (2004). “Relationships between structural and luminescence properties in europium doped borate under VUV excitation (in Chinese),” J. Chin. Rare Earth Soc. 22, 863866.Google Scholar
Wei, Z. G., Sun, L. D., Liao, C. S., Yan, C. H., and Huang, S. H. (2002). “Fluorescence intensity and color purity improvement in nanosized YBO3: Eu,” Appl. Phys. Lett. 80, 14471449.Google Scholar
Wei, Z., Yuan, J. M., Li, S. H., Liao, J., and Mao, Y. L. (2013). “Density functional study on the electronic and magnetic properties of two-dimensional hexagonal boron nitride containing vacancy,” Acta Phys. Sin. 62, 20131012013107.Google Scholar
Wiesch, A. and Bluhm, K. (1997). “The first cadmium rare earth borates CdLn[B5O10] with Ln = La, Sm, Eu,” Acta Crystallogr. C: Cryst. Struct. Commun. 53, 17301733.CrossRefGoogle Scholar
Yang, Z., Chen, X. L., Liang, J. K., Lan, Y. C., and Xu, T. (2001). “Phase relations in the MgO-Ga2O3-B2O3 system and the crystal structure of MgGaBO4 ,” J. Alloy Compd. 319, 247252.CrossRefGoogle Scholar
Yang, L., Wan, Y., Huang, Y., Chen, C., and Seo, H. J. (2016). “Development of YK3B6O12: RE (RE = Eu3+, Tb3+, Ce3+) tricolor phosphors under near-UV light excitation,” J. Alloy. Compd. 684, 4046.Google Scholar
Ye, S., Li, Y. J., Yu, D. C., Dong, G. P., and Zhang, Q. Y. (2011). “Room-temperature upconverted white light from GdMgB5O10: Yb3+, Mn2+ ,” J. Mater. Chem. 21, 37353739.CrossRefGoogle Scholar
Zhou, D., He, D. W., Liang, Z. Y., and Hou, T. (2007). “Luminescence properties of MO-Re 2O3-B2O3: Eu3+ (M = Mg, Sr; Re = Y, Gd) under VUV excitation,” Key Eng. Mater. 336, 597599.Google Scholar
Supplementary material: File

Zhang supplementary material

Zhang supplementary material 1

Download Zhang supplementary material(File)
File 112.6 KB
Supplementary material: File

Zhang supplementary material

Zhang supplementary material 2

Download Zhang supplementary material(File)
File 18.5 KB