Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T05:58:43.105Z Has data issue: false hasContentIssue false

DX Center Energy Level in InxAl1−xAs Compounds

Published online by Cambridge University Press:  10 February 2011

Hüseyin Sari
Affiliation:
ECE Department University of California, San Diego, CA 92093
Harry H. wieder
Affiliation:
ECE Department University of California, San Diego, CA 92093
Get access

Abstract

The presence of DX centers in InxAl1−xAs, primarily in the indirect portion of the InxAl1−xAs bandgap, has been determined using modulation doped InxAl1−xAs/InyGa1−yAs heterostructures by means of persistent photoconductivity (PPC) and galvanomagnetic measurements. From the cooling bias experiment, the PPC, and self consistent Poisson and Schrddinger simulations the ratio of the ionized shallow donors to the DX centers is obtained. Using this ratio in the grand canonical ensemble (GCE) the energy level of DX centers is determined. It is found that the DX energy level merges with the conduction band at x ≅ 0.42 and is resonant with the conduction band in higher indium concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1- Lang, D. V. and Logan, R. A., Phys. Rev. Lett. 39, 635(1977).Google Scholar
2- Mooney, P. M., J. Appl. Phys. 67(3) 1990.Google Scholar
3- Chadi, D. J. & Chang, K. J., Phys. Rev. B, 39(10063) 1987.Google Scholar
4- Mizuta, M., Tachikawa, M., Kukimoto, H., and Minomura, , Japn. J. Appl. Phys. 24, L143(1985).Google Scholar
5- Chand, N., Henderson, T., Klem, J., Masselink, W. T., Fischer, R., Chang, Y-C., H., Morkoc, Phys. Rev. B 30, 4481 (1984).Google Scholar
6- Calleja, , Romero, A. L., Fernandez de Avila, S., Monuz, E., and Castagne, J., Semicond. Sci. Technol. 206 (1984).Google Scholar
7- Frtih, F. E., Sallese, J. M., Beck, M., Maude, D. K., Wilike, U., Rabary, M., Portal, J. C., Ilegems, M., Solid State Comm. 89, 323(1994).Google Scholar
8- Hong, W-P, Dhar, S., Bhattacharya, P. K., and Chin, A., J. Electronics Material vol.16, No.4, 271(1987).Google Scholar
9- Young, A. P., and Wieder, H. H., J. Vac. Sci. Technol. B 14(4), 2944 (1996).Google Scholar
10- Young, A. P., DX Centers in InAlAs/InGaAs Based Heterostructures. University of California San Diego 1997.Google Scholar
11- Burstein, L., Shapira, Y., Bennett, B. R., Alamo, J. A. del, Appl. Phys. 78 (12), 7163(1995).Google Scholar
12- Mooney, P. M., Caswell, N. S., and Wright, S. L., J. Appl. Phys. 62(12), 4786(1987).Google Scholar
13- Buks, E., Heiblum, M., Levinson, Y., and Shtrikman, H., Semi. Sci. and Technol. 9, 2031(1994).Google Scholar
14- Wieder, H. H. and Sari, H., 26th Conference on the Physics and Chemistry of Semiconductor Interfaces, San Diego, CA 1999.Google Scholar
15- Software courtesy of G. Snider, Cornell University, Ithaca, NY 14853.Google Scholar
16- Lazzouni, M. E. and Sham, L. J., Phys. Rev. B 48, 8948(1993).Google Scholar
17- Sari, H., Wieder, H. H., J. Appl. Phys. 85, 3380(1999).Google Scholar