Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-06T00:03:38.311Z Has data issue: false hasContentIssue false

Vapor Phase Synthesis of II-IV Semiconductor Nanoparticles in a Counterflow Jet Reactor

Published online by Cambridge University Press:  10 February 2011

D. Sarigiannis
Affiliation:
Department of Chemical Engineering. State University of New York. Buffalo, NY 14260
J.D. Peck
Affiliation:
Department of Chemical Engineering. State University of New York. Buffalo, NY 14260
T.J. Mountziaris*
Affiliation:
Department of Chemical Engineering. State University of New York. Buffalo, NY 14260
G. Kioseoglou
Affiliation:
Department of Physics. State University of New York. Buffalo., NY 14260
A. Petrou
Affiliation:
Department of Physics. State University of New York. Buffalo., NY 14260
*
#Corresponding Author. E-mail: tjm@eng.buffalo.edu
Get access

Abstract

The vapor-phase synthesis of polycrystalline ZnSe nanoparticles is reported. The particles were grown at room temperature and at a pressure of 125 torr in a counterflow jet reactor and were collected by impact on a Si watler. The precursors used in this study were vapors of (CH3)2Zn:[N(C2H5)3)]2 and H2Se gas diluted in hydrogen. These precursors have been used in the past for Metalorganic Vapor Phase Epitaxy (MOVPE) of ZnSe thin films. The particles were characterized by Transmission Electron Microscopy (TEM). electron diffraction. and Raman spectroscopy. The reactor was operated in a continuous, steady-state mode using a gas delivery system that is typical flor MOVPII systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 M.A., Hines Guyot-Sionnest, P., J. Phys. Chem. 100, 486 (1996).Google Scholar
2 C.B., Murray, C.R., Kagan. M.G., Bawendi. Science 270, 1335 (1995).Google Scholar
3 A.P., Alivisatos, Science, 271. 933 (1996).Google Scholar
4 Bruchez, M. Jr Moronne, M., Gin, I. Weiss, S., A.P., Alivisatos. Science 281, 2013 (1998).10.1126/science.281.5385.2013Google Scholar
5 C.B., Murray, Norris, D.J. M.G., Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).Google Scholar
6 W.A., Saunders. P.C., Sercel, Atwater, I I.A., K.J., Vahala, Flagan, R.C., Appl. Phys. lett. 60, 950 (1992).Google Scholar
7 Deppert, K., M.t., Magnusson, Samuelson, L., Maim, J., Svensson, C. Bolvin, J., J. Aerosol Sci. 29, 737 (1998)10.1016/S0021-8502(97)10017-9Google Scholar
8 Koyona, T. Ohtsuka, S., Nagata, H., Tanaka, S., J. Crystal Growth 117, 156 (1992).Google Scholar
9 Mountziaris, T. J., Peck, J., Stoltz, S., W.Y., Yu. Petrou, A., Mattocks, P.G., Appl. Phys. lett. 68, 2270 (1996).10.1063/1.115881Google Scholar
10 Peck, J.. T.J., Mountziaris, Stoltz, S., Petrou, A. P.G., Mattocks, J. Crystal Growth 170. 523 (1997)10.1016/S0022-0248(96)00638-0Google Scholar
11 Griffiths, C.I, Stafford, A., Irvine, S.J.C., Maung, N., A.C., Jones, Smith, I.M., S.A., Rushworth, Appl. Phys. Lett. 68, 1294 (1996).10.1063/1.115957Google Scholar
12 M.K., Akhtar, Lipscomb, G.G., S.t., Pratsinis, Aerosol Sci. Technology 21, 83 (1994).Google Scholar