Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T07:58:00.363Z Has data issue: false hasContentIssue false

Fundamentals of silico-ferrite of calcium and aluminium (SFCA) and SFCA-I iron ore sinter bonding phase formation: effects of mill scale addition

Published online by Cambridge University Press:  22 August 2017

Nathan A. S. Webster*
Affiliation:
CSIRO Mineral Resources, Private Bag 10, Clayton South, VIC 3169, Australia
Mark I. Pownceby
Affiliation:
CSIRO Mineral Resources, Private Bag 10, Clayton South, VIC 3169, Australia
Rachel Pattel
Affiliation:
CSIRO Mineral Resources, Private Bag 10, Clayton South, VIC 3169, Australia
*
a)Author to whom correspondence should be addressed. Electronic mail: nathan.webster@csiro.au

Abstract

The thermal decomposition of mill scale, and the effect of mill scale addition on the formation and decomposition of Silico-Ferrite of Calcium and Aluminium (SFCA) and SFCA-I iron ore sinter bonding phases, has been investigated using in situ X-ray diffraction. Application of the external standard method of quantitative phase analysis of the in situ data collected during decomposition of the mill scale highlighted the applicability of this method for the determination of the nature and abundance of amorphous material in a mineral sample. Increasing mill scale addition from 2.6 to 10.6 and to 21.2 wt% in an otherwise synthetic sinter mixture composition designed to form SFCA did not significantly affect the thermal stability ranges of SFCA-I or SFCA, nor did it significantly affect the amount of each of SFCA or SFCA-I, which formed. This was attributed to the low impurity (i.e. Mn, Mg) concentration in the mill scale, and also the transformation to hematite during heating of the wüstite and magnetite present in the mill scale, with the hematite available for reaction to form SFCA and SFCA-I.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahsan, S. N., Mukherjee, T., and Whiteman, J. A. (1983). “Structure of fluxed sinter,” Ironmak. Steelmak. 10, 5464.Google Scholar
Birks, N., Meier, G. H., and Pettit, F. S. (2006) Introduction to the High Temperature Oxidation of Metals (Cambridge University Press, Cambridge), 2nd ed. Google Scholar
Blake, R., Hessevick, R., Zoltai, T., and Finger, L. (1966). “Refinement of the hematite structure,” Am. Mineral. 51, 123129.Google Scholar
Bruker (2014). TOPAS, version 5. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Dawson, P. R., Ostwald, J., and Hayes, K. M. (1985). “Influence of alumina on the development of complex calcium ferrites in iron ore sinters,” T. I. Min. Metall. C 94, 7178.Google Scholar
Fjellvåg, H., Grønvold, F., Stølen, S., and Hauback, B. C. (1996). “On the crystallographic and magnetic structures of nearly stoichiometric iron monoxide,” J. Solid State Chem. 124, 5257.Google Scholar
Hamilton, J. D. G., Hoskins, B. F., Mumme, W. G., Borbidge, W. E., and Montague, M. A. (1989). “The crystal structure and crystal chemistry of Ca2.3Mg0.8Al1.5Si1.1Fe8.3O20 (SFCA): solid solution limits and phase relationships of SFCA in the SiO2-Fe2O3-CaO(-Al2O3) system,” Neues Jahrb. Miner. Abh. 161, 126.Google Scholar
Hamilton, W. C. (1958). “Neutron diffraction investigation of the 119 K transition in magnetite,” Phys. Rev. 110, 10501057.Google Scholar
Hancart, J., Leroy, V., and Bragard, A. (1967). A Study of the Phases Present in Blast Furnace Sinter. Some Considerations on the Mechanism of their Formation (C.N.R.M. Report, DS 24/67), pp. 37.Google Scholar
Hazemann, J. L., Berar, J. F., and Manceau, A. (1991). “Rietveld studies of the aluminium-iron substitution in synthetic goethite,” Mater. Sci. Forum 79, 821826.Google Scholar
Hill, R. J. and Howard, C. J. (1987). “Quantitative phase analysis from neutron powder diffraction data using the Rietveld method,” J. Appl. Crystallogr. 20, 467474.Google Scholar
Hsieh, L-H. and Whiteman, J. A. (1989). “Sintering conditions for simulating the formation of mineral phases in iductrial iron ore sinter,” ISIJ Int. 29, 2432.Google Scholar
Huebner, J. S. (1971). “Buffering techniques for hydrostatic systems at elevated pressures,” in Research Techniques for High Pressure and High Temperature, edited by Ulmer, G. C. (Springer-Verlag, New York), pp. 123178.Google Scholar
Lager, G. A., Jorgensen, J. D., and Rotella, F. J. (1982). “Crystal structure and thermal expansion of α-quartz SiO2 at low temperature,” J. Appl. Phys. 53, 67516756.Google Scholar
Li, Y., Li, Y. Q., and Fruehan, R. J. (2001). “Formation of titanium carbonitride from hot metal,” ISIJ Int. 41, 14171422.CrossRefGoogle Scholar
Madsen, I. C. and Scarlett, N. V. Y. (2008). “Quantitative phase analysis,” in Powder Diffraction: Theory and Practice, edited by Dinnebier, R. E. and Billinge, S. J. L. (Royal Society of Chemistry, Cambridge), pp. 298331.Google Scholar
Minervini, L. and Grimes, R. W. (1999). “Defect clustering in wüstite,” J. Phys. Chem. Solids 60, 235245.Google Scholar
Mumme, W. G., Clout, J. M. F., and Gable, R. W. (1998). “The crystal structure of SFCA-I, Ca3.18Fe3+ 14.66Al1.34Fe2+ 0.82O28, a homologue of the aenigmatite structure type, and new crystal structure refinements of β-CFF, Ca2.99Fe3+ 14.30Fe2+ 0.55O25 and Mg-free SFCA, Ca2.45Fe3+ 9.04Al1.74Fe2+ 0.16Si0.6O20 ,” Neues Jahrb. Miner. Abh. 173, 93117.Google Scholar
Patrick, T. R. C. and Pownceby, M. I. (2001). “Stability of SFCA (silico-ferrite of calcium and aluminium) in air: solid solution limits between 1240 °C and 1390 °C and phase relationships within the Fe2O3-CaO-Al2O3-SiO2 (FCAS) system,” Metall. Mater. Trans. B 32, 111.Google Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A Cryst. 32, 751767.Google Scholar
Umadevi, T., Brahmacharyulu, A., Karthik, P., Mahapatra, P. C., Prabhu, M., and Ranjan, M. (2012). “Recycling of steel plant mill scale via iron ore sintering plant,” Ironmak. Steelmak. 39, 222227.Google Scholar
Wang, Z., Pinson, D., Chew, S., Rogers, H., Monaghan, B. J., Pownceby, M. I., Webster, N. A. S., and Zhang, G. (2016a). “Behaviour of New Zealand Ironsand during iron ore sintering,” Metall. Mater. Trans. B 47, 330343.Google Scholar
Wang, Z., Pinson, D., Chew, S., Monaghan, B. J., Pownceby, M. I., Webster, N. A. S., Rogers, H., and Zhang, G. (2016b). “Effect of addition of mill scale on sintering of iron ores,” Metall. Mater. Trans. B 47, 28482860.Google Scholar
Webster, N. A. S., Pownceby, M. I., Madsen, I. C., and Kimpton, J. A. (2012). “Silico-ferrite of calcium and aluminium (SFCA) iron ore sinter bonding phases: new insights into their formation during heating and cooling,” Metall. Mater. Trans. B 43, 13441357.Google Scholar
Webster, N. A. S., Pownceby, M. I., Madsen, I. C., and Kimpton, J. A. (2013a). “Effect of oxygen partial pressure on the formation mechanisms of complex Ca-rich ferrites,” ISIJ Int. 53, 774781.Google Scholar
Webster, N. A. S., Pownceby, M. I., and Madsen, I. C. (2013b). “ In situ X-ray diffraction investigation of the formation mechanisms of silico-ferrite of calcium and aluminium-I-type complex calcium ferrites,” ISIJ Int. 53, 13341340.CrossRefGoogle Scholar
Webster, N. A. S., Pownceby, M. I., Madsen, I. C., Studer, A. J., Manuel, J. R., and Kimpton, J. A. (2014). “Fundamentals of SFCA (Silico-ferrite of Calcium and Aluminium) and SFCA-I iron ore sinter bonding phase formation: effects of CaO:SiO2 ratio,” Metall. Mater. Trans. B 45, 20972105.Google Scholar
Webster, N. A. S., Churchill, J. G., Tufaile, F., Pownceby, M. I., Manuel, J. R., and Kimpton, J. A. (2016). “Fundamentals of silico-ferrite of calcium and aluminium (SFCA) and SFCA-I iron ore sinter bonding phase formation: effects of titanomagnetite-based ironsand and titanium addition,” ISIJ Int. 56, 17151722.Google Scholar
Webster, N. A. S., O'Dea, D. P., Ellis, B. G., and Pownceby, M. I. (2017). “Effects of gibbsite, kaolinite and al-rich goethite as alumina sources on silico-ferrite of calcium and aluminium (SFCA) and SFCA-I iron ore sinter bonding phase formation,” ISIJ Int. 57, 4147.Google Scholar