Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T10:48:01.540Z Has data issue: false hasContentIssue false

Computation of Temperature-Pressure Phase Diagrams of High-Pressure Nitrides

Published online by Cambridge University Press:  26 February 2011

Peter Kroll*
Affiliation:
peter.kroll@ac.rwth-aachen.de, RWTH Aachen, Inorganic Chemistry, Landoltweg 1, Aachen, N/A, Germany
Get access

Abstract

We propose an explicit scheme to include the fugacity of nitrogen in computations of phase diagrams of nitride compounds at high-temperature/high-pressure conditions. The assessment is based on available thermochemical data and two kind of extrapolating functions to provide upper and lower boundary for the fugacity coefficient as a funtion of p and T. The procedure is applied to investigate the synthesis of novel nitrides of tantalum, tungsten, and platinum. The combination of first-principle and thermochemical calculations let us predict the synthesis of a new high-pressure phase of Ta3N5 at about 27 GPa. Synthesis of WN2 becomes feasible at about 45 GPa. We furthermore explain why the synthesis of the noble metal subnitride, PtN2, occurs at about 40 GPa, and why PtN is not accessible in high-pressure experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Boehler, R., Reviews of Geophysics 2000, 38, 221245.Google Scholar
2. McMillan, P. F., Chem. Comm. 2003, 919923.Google Scholar
3. Zerr, A., Miehe, G., Serghiou, G., Schwarz, M., Kroke, E., Riedel, R., Fueß, H., Kroll, P., Böhler, R., Nature 1999, 400, 340.Google Scholar
4. Kroll, P., Schnick, W., Chem. Eur. J. 2002, 8, 3530.Google Scholar
5. Kroll, P., Phys. Rev. Lett. 2003, 90, 125501.Google Scholar
6. Zerr, A., Miehe, G., and Riedel, R., Nature Materials 2003, 2, 185189 Google Scholar
7. Kroll, P., J. Phys.: Condens. Matter 2004, 16, S1235–S1244.Google Scholar
8. Kroll, P., Schroeter, T., Peters, M., Angew Chem. Int. Ed. 2005, 44, 4249.Google Scholar
9. Utsumi, W., Saitoh, H., Kaneko, H., Watanuki, T., Aoki, K., and Shimomura, O., Nature Materials 2003, 2, 735.Google Scholar
10. Chase, M. W., JANAF-Thermochemical Tables, Journal of Physical and Chemical Reference, Monograph 9 (1998).Google Scholar
11. Unland, J., Onderka, B., Davydov, A., and Schmid-Fetzer, R., J. Crystal Growth 2003, 256, 3351.Google Scholar
12. Ma, X., Li, C., Wang, F., and Zhang, W., Calphad 2003, 27, 383388.Google Scholar
13. Gregoryanz, E., Sanloup, C., Somayazulu, M., Badro, J., Fiquet, G., Mao, H. K., and Hemley, R. J., Nature Materials 2004, 3, 294297.Google Scholar
14. Crowhurst, J. C., Goncharov, A. F., Sadigh, B., Evans, C. L., Morrall, P. G., Ferreira, J. L., and Nelson, A. J., Science 2006, 311, 12751278.Google Scholar