Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T21:20:49.729Z Has data issue: false hasContentIssue false

Simultaneous TEM and Cathodoluminescence Imaging of Non Uniformity in In0.1Ga0.9N Quantum Wells

Published online by Cambridge University Press:  11 February 2011

Nicholas M. Boyall
Affiliation:
Department of Physics, University of Durham, South Road, Durham, DH1 3LE, UK.
Ken Durose
Affiliation:
Department of Physics, University of Durham, South Road, Durham, DH1 3LE, UK.
Ian M. Watson
Affiliation:
Institute of Photonics, University of Strathclyde, Wolfson Centre, 106 Rottenrow, Glasgow, G4 ONW, UK.
Get access

Abstract

Monochromatic cathodoluminescence (CL) imaging of metal-organic vapour phase epitaxy (MOVPE) grown In0.1Ga0.9N single quantum wells (QW) has been performed in a scanning transmission electron microscope (STEM). Spatially resolved fluctuations in the CL emission wavelength and intensity of the QW luminescence were recorded. The presence of regions with luminescent features asymmetrically distributed either side of the QW peak emission was inferred. These fluctuations may be attributed to, by for example, variations of ±0.01 in the In fraction of the In0.1Ga0.9N alloy, to changes of up to 0.6nm in the QW thickness. However these factors do not explain the gross fluctuations in QW emission intensity observed in TEM-CL on the scale of ∼1μm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., in Group III Nitride Semiconductor Compounds, edited by Gil, B., (Oxford University Press, Oxford, 1998), 391416 Google Scholar
2. O′Donnell, K.P., Mosselmans, J.F.W., Martin, R.W., Pereira, S., and White, M.E., J. Phys.-Condens. Mat. 13, 69776991 (2001).Google Scholar
3. O′Donnell, K.P., Phys. Status Solidi A 183(117), 117120 (2001).Google Scholar
4. Chichibu, S.F., Abare, A.C., Mack, M.P., Minsky, M.S., Deguchi, T., Cohen, D., Kozodoy, P., Fleischer, S.B., Keller, S., Speck, J.S., Bowers, J.E., Hu, E., Mishra, U.K., Coldren, L.A., DenBaars, S.P., Wada, K., Sota, T., and Nakamura, S., Mat. Sci. Eng. B B59, 298306 (1999).Google Scholar
5. Chichibu, S., Wada, K., and Nakamura, S., Appl. Phys. Lett. 71(16), 23462348 (1997).Google Scholar
6. Henley, S.J., Bewick, A., Cherns, D., and Ponce, F.A., J. Cryst. Growth 230, 481486 (2001).Google Scholar
7. Selke, H., Amirsawadkouhi, M., Ryder, P.L., Bottcher, T., Einfeldt, S., Hommel, D., Bertram, F., and Christen, J., Mat. Sci. Eng. B 59, 279282 (1999).Google Scholar
8. Albrecht, M., Grillo, V., Borysiuk, J., Remmele, T., Strunk, H.P., Walther, T., Mader, W., Prystawko, P., Leszczynski, M., Grzegory, I., and Porowski, S., Inst. Phys. Conf. Ser. 169, 267272 (2001).Google Scholar
9. Boyall, N.M., Durose, K., and Watson, I.M., Microsc, J.., (in press)Google Scholar
10. Petroff, P.M., Logan, R.A., and Savage, A., Phys. Rev. Lett. 44(4), 287291 (1980).Google Scholar
11. Steeds, J.W., Rev. Phys. Appl. 24(6), 6572 (1989).Google Scholar
12. Yuan, J., Berger, S.D., and Brown, L.M., J. Phys. - Condens. Mat. 1, 32533265 (1989).Google Scholar
13. Pecharroman-Gallego, R., Edwards, P.R., Martin, R.W., and Watson, I.M., Mater. Sci. Eng. B 93, 9497 (2002).Google Scholar
14. Hurst, P., Dawson, P., Levetas, S.A., Godfrey, M.J., Watson, I.M., and Duggan, G., Phys. Status Solidi B 228(1), 137140 (2001).Google Scholar
15. Pereira, S., Pereira, E., Alves, E., Barradas, N.P., O′Donnell, K.P., Liu, C., Deatcher, C.J., and Watson, I.M., Appl. Phys. Lett. 81(15), 29502952 (2002).Google Scholar
16. Martin, R.W., Edwards, P.R., O′Donnell, K.P., Mackay, E.G., and Watson, I.M., Phys. Status Solidi A 192(1), 117123 (2002).Google Scholar