Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T02:25:21.597Z Has data issue: false hasContentIssue false

Fabrication of Nanostructured ZnO UV Sensor

Published online by Cambridge University Press:  01 February 2011

Shiva S. Hullavarad
Affiliation:
fnssh1@uaf.edu, UNIVERSITY OF ALASKA FAIRBANKS, OFFICE OF ELECTRONIC MINIATURIZATION, 3330 INDUSTRIAL AVENUE, FAIRBANKS, AK, 99701, United States, 907-455-2017, 907-455-2019
N. V. Hullavarad
Affiliation:
FFNVH@UAF.EDU, UNIVERSITY OF ALASKA FAIRBANKS, OFFICE OF ELECTRONIC MINIATURIZATION, 3330 INDUSTRIAL AVENUE, FAIRBANKS, AK, 99701, United States
M. Mooers
Affiliation:
FSMHM2@UAF.EDU, UNIVERSITY OF ALASKA FAIRBANKS, OFFICE OF ELECTRONIC MINIATURIZATION, 3330 INDUSTRIAL AVENUE, FAIRBANKS, AK, 99701, United States
P. C. Karulkar
Affiliation:
pramod.karulkar@uaf.edu, UNIVERSITY OF ALASKA FAIRBANKS, OFFICE OF ELECTRONIC MINIATURIZATION, 3330 INDUSTRIAL AVENUE, FAIRBANKS, AK, 99701, United States
Get access

Abstract

In this paper we describe the fabrication of nanostructure based ZnO ultra violet sensor by a simple route without involving the clean room processing of inter digitized electrodes. The ZnO nanostructures consist of micro spheres of dimension 600 nm- 2 microns embedded in the network of nanowires of dimension 40 nm. The optical properties are studied by Photoluminescence spectroscopy that revealed the exciton band gap of 3.2 eV at 383 nm. The ultra violet sensors exhibit 2 orders of UV to visible rejection ratio. The photo response of Ultra violet sensors as a function of electrode spacing will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Kan, S. et al., Nature Materials, 2, 155 (2003)Google Scholar
2 Tan, O.K., Cao, W., Hu, Y., Zhu, W., Ceramics International 30, 1127 (2004)Google Scholar
3 Alivisatos, A. P., Science 271, 933 (1996).Google Scholar
4 Liu, B., Ren, T., Zhang, J., Chen, H., Zhu, J., Burda, C., Electrochemistry Communications 9, 551 (2007)Google Scholar
5 Cheng, X.L., Zhao, H., Huo, L.H., Gao, S., Zhao, J.G., Sensors and Actuators B 102, 248 (2004)Google Scholar
6 Ge, C., Xie, C., Cai, S., Mater. Sci. Eng. B (2006), doi:10.1016/j.mseb.2006.10.006Google Scholar
7 Zhang, Y., Yu, K., Jiang, D., Zhu, Z., Geng, H., Luo, L., Applied Surface Science, 242, 212 (2005)Google Scholar
8 Yi, G.C., Wang, C., Park, W., Semicond. Sci. Technol. 20, S22–S34 (2005)Google Scholar
9 Hullavarad, S.S. and Karulkar, P.C., Effect of oxygen on rise and decay time of ZnO nanostructured film consisting of microspheres in network of nanowires” Government Microcircuit Applications and Circuit Technology Conference, March 19–22, 2007, FL, USA.Google Scholar
10 Mo, M., Yu, J.C., Zhang, L., Li, S.K.A., Advanced Materials, 17, 756 (2005)Google Scholar
11 Ozgur, U., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Do, S. Doan, S., Avrutin, V., Cho, S.-J., Morkoc, H., J. Appl. Phys., 98, 041301 (2005)Google Scholar
12 Zou, B.S., Liu, R.B., Wang, F.F., Pan, A.L., Cao, L. and Wang, Z.L., J. Phys. Chem. B, 110, 12865 (2006)Google Scholar
13 Leiter, F., Alves, H., Pfisterer, D., Romanov, N.G., Hofmann, D.M., Meyer, B.K., Physica B 340–342, 201 (2003)Google Scholar
14 Banerjee, D., Lao, J. Y., Wang, D. Z., Huang, J. Y., Ren, Z. F., Steeves, D., Kimball, B., Sennett, M., Appl. Phys. Lett., 83, 2061 (2003)Google Scholar
15 Kim, T.W., Kawazoe, T., Yamazaki, S., Ohtsu, M., Sekiguchi, T., Appl. Phys. Lett., 84, 3358 (2004)Google Scholar
16 Wang, X., Li, Q., Liu, Z., Zhang, J., Liu, Z., Wang, R., Appl. Phys. Lett., 84, 4941 (2004)Google Scholar
17 Hullavarad, S.S., Dhar, S., Varughese, B., Takeuchi, I., Venkatesan, T., Vispute, R.D., J. Vac. Sci. Technol. A 23, 982 (2005)Google Scholar
18 Li, Q. H., Wan, Q., Liang, Y. X., Wang, T. H., Appl. Phys. Lett., 84, 4556 (2004)Google Scholar