Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T00:54:35.941Z Has data issue: false hasContentIssue false

The Quaternary Isotope Laboratory Thermal Diffusion Enrichment System: Description and Performance

Published online by Cambridge University Press:  18 July 2016

Pieter M Grootes
Affiliation:
Quaternary Isotope Laboratory, University of Washington, Seattle, Washington 98195
Minze Stuiver
Affiliation:
Quaternary Isotope Laboratory, University of Washington, Seattle, Washington 98195
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The thermal diffusion enrichment system of the Quaternary Isotope Laboratory consists of 23 hot wire columns of 3m effective length combined to 2 separate systems of 3 and 3 separate systems of 4 columns at the top, each system in series with 1 bottom column. From ≈ 130 L NTP of CO (∼ 65g of carbon) it produces ≈ 8 L NTP of CO (~ 4g of carbon) enriched in 12C18O by a factor 6 to 7 and in 14C16O by a factor 7 to 8 in about 5 weeks. For 12C18O the system has a theoretical equilibrium separation factor of about 250 and a theoretical equilibrium enrichment of about 15. For 14C16O these values are 1300 and 16, respectively. The dependence of thermal diffusion transport on gas exchange between top and bottom section and between columns and reservoirs and on wire temperature is given. Forced gas exchange and a higher wire temperature gave a more rapidly increasing enrichment without substantially increasing its final value of 6 to 7 for 12C18O. A comparison with the Groningen enrichment system shows that the two systems behave very similarly and that not the system geometry but individual column parameters and the ratio total sample mass/enriched sample mass are the dominant factors determining the enrichment.

Type
Research Article
Copyright
Copyright © The American Journal of Science 

References

Agrawal, D P, Gupta, S K, and Kusumgar, Sheela, 1971, Tata Institute radiocarbon date list IX: Radiocarbon, v 13, p 442449.CrossRefGoogle Scholar
Bennett, C L, Beukens, R P, Clover, M R, Elmore, D, Gove, H E, Kilius, L R, Litherland, A E, and Purser, K H, 1978, Radiocarbon dating using electrostatic accelerators: dating of milligram samples: Science, v 201, p 345347.Google Scholar
Bennett, C L, Beukens, R P, Clover, M R, Gove, H E, Liebert, R B, Litherland, A E, Purser, K H, and Sandheim, W E, 1977, Radiocarbon dating using electrostatic accelerators: negative ions provide the key: Science, v 198, p 508510.Google Scholar
Boersma-Klein, V and Vries, A de, 1966, The influence of the distribution of atomic masses within the molecule on thermal diffusion. I. Isotopic CO and N2 molecules: Physica, v 32, p 717733.CrossRefGoogle Scholar
Buddemeier, R W, Young, A Y, Fairhall, A W, and Young, J A, 1970, Improved system of methane synthesis for radiocarbon dating: Rev Sci Instruments, v 41, p 652654.Google Scholar
Erlenkeuser, H, 1971a, Aufbau einer Thermodiffusionsanlage zur Anreicherung von Methan-Isotopen im Hinblick auf die Verwendung bei Altersbestimmungen nach der 14C-Methode: Thesis, Kiel, Germany.Google Scholar
Erlenkeuser, H 1971b, Predictable low enrichment of methane isotopes by Clusius-Dickel thermal-diffusion columns for use in radiocarbon dating technique: Zeitschr Naturforsch, v 26a, p 13651370.Google Scholar
Erlenkeuser, H A thermal diffusion plant for radiocarbon isotope enrichment from natural samples: internat conf, 9th, on radiocarbon dating, Proc, La Jolla, California (in press).Google Scholar
Felber, Hans and Pak, E, 1972, Erweiterung der 14C-Altersbestimmungsmethode durch quantitative Isotopenanreicherung im Trennrohr: Sitzungber Österr Akad Wiss, v 180, p 299316.Google Scholar
Felber, Hans and Pak, E 1974, Quantitative isotope enrichment in a thermal diffusion arrangement: Appl Physics, v 5, p 147152.Google Scholar
Grootes, P M, 1977, Thermal diffusion isotopic enrichment and radiocarbon dating beyond 50,000 years bp: Thesis, Univ Groningen, the Netherlands, 221 p.Google Scholar
Grootes, P M 1978, Carbon-14 time scale extended: comparison of chronologies: Science, v 200, p 1115.Google Scholar
Grootes, P M, Mook, W G, Vogel, J C, Vries, A E de, Haring, A, and Kistemaker, J, 1975, Enrichment of radiocarbon for dating samples up to 75,000 years: Zeitschr Naturforsch, v 30a, p 114.Google Scholar
Haring, A, Vries, A E de, and Vries, Hl de, 1958, Radiocarbon dating up to 70,000 years by isotopic enrichment: Science, v 128, p 472473.Google Scholar
Jones, R C and Furry, W H, 1946, The separation of isotopes by thermal diffusion: Rev Modern Physics, v 18, p 151224.Google Scholar
Kretner, R, 1973, Quantitative Anreicherung von C14H4 mit dem Clusius-Dickelschen Trennrohr zur Anwendung in der 14C Datierungsmethode: Thesis, Munich, Germany.CrossRefGoogle Scholar
Kretner, R and Dickel, G, 1975, Enrichment of 14CH4 by thermal diffusion for use in radiocarbon dating: Zeitschr Naturforsch, v 30a, p 554560.Google Scholar
Malota, F, 1962, Eine Erweiterung der Methode für Altersbestimmungen durch Anreicherung des C14 Isotops im Trennrohr: Thesis, Munich, Germany.Google Scholar
Muller, R A, 1977, Radioisotope dating with a cyclotron: Science, v 196, p 489494.Google Scholar
Muller, R A, Stephenson, E J, and Mast, T S, 1978, Radioisotope dating with an accelerator: a blind measurement: Science, v 201, p 347348.Google Scholar
Nelson, D E, Korteling, R G, and Stott, W R, 1977, Carbon-14: direct detection at natural concentrations: Science, v 198, p 507508.Google Scholar
Pak, E, 1970, Erweiterung der C14-Altersbestimmungsmethode durch Isotopenanreicherung im Trennrohr: Thesis, Vienna, Austria.Google Scholar
Rutherford, W M and Kaminski, K J, 1967, Experimental verification of the theory of the thermal-diffusion column: Chem Physics Jour, v 47, p 54275432.Google Scholar
Stuiver, Minze, 1978, 14C dating: a comparison of beta and ion counting: Science, v 202, p 881883.Google Scholar
Stuiver, Minze, Heusser, C J, and Yang, I C, 1978, North American glacial history extended to 75,000 years ago: Science, v 200, p 1621.Google Scholar
Stuiver, Minze, Robinson, S W, and Yang, I C, 14C dating to 60,000 years bp with proportional counters: internat conf, 9th, on radiocarbon dating, Proc, La Jolla, California (in press).Google Scholar
Vasaru, G, Müller, G, Reinhold, G, and Fodor, T, 1969, The thermal diffusion column: Berlin, VEB Deutscher Verlag Wiss, 207 p.Google Scholar
Vogel, J C, and Waterbolk, H T, 1972, Groningen radiocarbon dates X: Radiocarbon, v 14, p 6110.Google Scholar
Vogel, J C, and Zagwijn, W H, 1967, Groningen radiocarbon dates VI: Radiocarbon, v 9, p 63106.Google Scholar
Vries, A E de, 1956, The enrichment of radioactive isotopes by thermal diffusion: Thesis, Univ Amsterdam, the Netherlands, 85 p.Google Scholar
Vries, Hl de, and Barendsen, G W, 1953, Radiocarbon dating by a proportional counter filled with carbon dioxide: Physica, v 19, p 987.Google Scholar