Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-05T06:40:24.674Z Has data issue: false hasContentIssue false

Measurement and Modeling of Porosity in Drying Cement Paste

Published online by Cambridge University Press:  25 February 2011

Leslie Parrott*
Affiliation:
Cement and Concrete Association, Wexham Springs, UK
Get access

Abstract

Preliminary models for predicting the performance of exposed concrete show that the porosity sub-model plays a pivotal role in linking properties with the developing gradients of cement paste microstructure that arise from drying and carbonation. The difficulties of porosity characterization are reviewed and some alternatives to traditional methods are considered. Property/porosity relationships are considered with particular reference to the volume, size-distribution and continuity of the larger pores. The factors influencing porosity under normal exposure conditions, such as cement hydration, drying and carbonation, are reviewed and the possibilities of modeling their effects are considered. Some comparisons between predicted and measured values of porosity are given. It is concluded that progress in modeling the performance of exposed concrete is likely to be linked with improvements in methods of pore structure characterization.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Parrott, L., NATO Adv. Sci. Inst. Ser. E (95), 213–228 (1985).CrossRefGoogle Scholar
2. Parrott, L., in Research on the Manufacture and Use of Cements, edited by Frohnsdorff, G., (Engineering Foundation, 1986), pp. 4373.Google Scholar
3. Parrott, L., Concr. (London) 19, 2224 (1985).Google Scholar
4. Parrott, L., Proc. 8th Int,. Congr. Chem. Cem., Rio, 1986 3, 4650 (1986).Google Scholar
5. Carrier, R. and Cady, P., J. Mater. 5(2), 294302 (1970).Google Scholar
6. Spears, R., Conc. Int.: Des. Constr. 1, 1518 (1983).Google Scholar
7. Senbetta, E. and Scholer, C., J. Amer. Concr. Inst. 56, 8286 (1984).Google Scholar
8. Patel, R.G., Parrott, L.J., Martin, J.A. and Killoh, D.C., Cem. Concr. Res. 15(2), 343356 (1985).Google Scholar
9. Sellevold, E. and Bager, D., Proc. 7th Int. Congr. Chem. Cem., Paris, 1980 4, 394399 (1980).Google Scholar
10. Parrott, L., Hansen, W. and Berger, R., Cem. Concr. Res. 10(5), 647655 (1980).CrossRefGoogle Scholar
11. Parrott, L., Cem. Concr. Res. 11, 651658 (1981).Google Scholar
12. Parrott, L., Philos. Trans. R. Soc. London A 310, 155166 (1983).Google Scholar
13. Verbeck, G., Cement and Concrete, STP 205 (ASTM, Philadelphia, 1950) pp. 1736.Google Scholar
14. Hamada, M., Proc. 5th Int. Symp. Chem. Cem., Tokyo, 1968 3, 343369 (1968).Google Scholar
15. Pihlajavaara, S., Mater. Constr. (Paris) 1(6), 521526 (1968).Google Scholar
16. Rozental, N. and Alekseev, S., RILEM Symp. Carb. Concrete, paper 2.4 (1976).Google Scholar
17. Hilsdorf, H., Kropp, J. and Gunter, M.. Proc. RILEM Sem. Durability, Hannover, 182–196 (1984).Google Scholar
18. Gregg, S. and Sing, K., Absorption, Surface Area and Porosity (Academic Press, 1967).Google Scholar
19. Proc. Symp. Characterization of Porous Solids, Univ. Neuchatel, 1978.Google Scholar
20. Dullien, F., Transport Phenomena in Porous Media and Pore Structure (Academic Press, 1979).Google Scholar
21. Iler, R., The Chemistry of Silica (Wiley and Sons, 1979).Google Scholar
22. Swanson, J., in Proc. Symp. Characterization of Porous Solids, Univ. Neuchatel, 1978, pp. 339342.Google Scholar
23. Litvan, G., Cem. Concr. Res. 6(1), 139144 (1976).CrossRefGoogle Scholar
24. Winslow, D., PhD Thesis, Purdue University (1973).Google Scholar
25. Kropp, J., Grafenecker, T. and Hilsdorf, H.., in Proc. Symp. Principles and Applications of Pore Structural Characterization, Milan, 1983 (RILEM) pp. 8396.Google Scholar
26. Quinson, J., Brun, M. et al., in Proc. Eur. Symp. Therm. Anal., 1976, pp. 5962.Google Scholar
27. Fontenay, C. le Sage de and Sellevold, E., in Durability of Building Materials and Components, STP 691, edited by Sereda, P. and Litvan, G. (ASTM, Philadelphia, 1980) pp. 425438.CrossRefGoogle Scholar
28. Homshaw, L., J. Therm. Anal. 19, 215234 (1980).CrossRefGoogle Scholar
29. Sellevold, E. and Bager, D., Tech. Univ. Denmark, Build. Mats. Lab. Tech. Rep. 86/80 (1980).Google Scholar
30. Homshaw, L. and Chaussidon, J., Dev. Sedimentol. 27, 141151 (1979).Google Scholar
31. Homshaw, L. and Cambier, P., J. Soil Sci. 31, 415428 (1980).Google Scholar
32. Winslow, D. and Diamond, S, Purdue University Rep. 31 (1969).Google Scholar
33. Marsh, B., Day, R. et al, Proc. Symp. Principles and Applications of Pore Structural Characterization, Milan, 1983 (RILEM).Google Scholar
34. Rahman, A., Proc. Brit. Ceram. Soc. 35(35), 249266 (1984).Google Scholar
35. Feldman, R., J. Amer. Ceram. Soc. 62(1), 3033 (1984).CrossRefGoogle Scholar
36. Parrott, L.J., Patel, R.G., Killoh, D.C. and Jennings, H.M., J. Amer. Ceram. Soc. 67(4), 233237 (1984).CrossRefGoogle Scholar
37. Jennings, H. and Parrott, L.. J. Mater. Sci. 21, 4048–59 (1986).CrossRefGoogle Scholar
38. Scrivener, K.L., Patel, H.H., Pratt, P.L. and Parrott, L.J., this symposium.Google Scholar
39. Powers, T., J. Amer. Ceram. Soc. 41(1), 16 (1958).CrossRefGoogle Scholar
40. Verbeck, G. and Helmuth, R., Proc. 5th Int. Symp. Chem. Cem., Tokyo, 1968 3, 132 (1968).Google Scholar
41. Fagerlund, G., Lund Inst. Technology Rep. 26 (1972).Google Scholar
42. Sereda, P., Feldman, R. and Ramachandran, V., Proc. 7th Int. Congr. Chem. Cem., Paris, 1980 1, Vl1/3–44 (1980).Google Scholar
43. Odler, I. and Rossler, M., Cem. Concr. Res. 15(3), 401410 (1985).CrossRefGoogle Scholar
44. Helmuth, R. and Turk, D., in Symp. on Structure of Portland Cement Paste and Concrete, Special Report 90 (Highway Research Board, Washington, 1966) pp. 135144.Google Scholar
45. Jambor, J., Proc. 5th Int. Symp. Chem. Cem., Tokyo, 1968 3, 541557 (1968).Google Scholar
46. Powers, T., Copeland, L. et al, J. Amer. Conc. Inst. 26(3), 285298 (1954).Google Scholar
47. Proc. Conf. Permeability of Concrete, London, 1985 (Concrete Society) 130 pp.Google Scholar
48. Mehta, P. and Manmohan, D., Proc. 7th Int. Congr. Chem. Cem., Paris, 1980 3, VII-l5, (1980).Google Scholar
49. Nyame, B. and Illston, J., Mag. Concr. Res. 33(116), 139146 (1981).CrossRefGoogle Scholar
50. Manmohan, D. and Mehta, P., Cem. Concr. Aggr. 3(1), 6367 (1981).Google Scholar
51. Grube, H., in Proc. Conf. Permeability of Concrete, London, 1985 (Concrete Society) pp. 77–88.Google Scholar
52. Day, R., Joshi, B. et al, Proc. 7th Symp. Ash Utilization, 1985 2, pp. 811827.Google Scholar
53. Kasai, Y. and Matsui, I., Rev. Gen. Meet., Tech. Sess. Cem. Assoc. Jpn., 223–226 (1982).Google Scholar
54. Parrott, L., Mater. Constr. (Paris) 17(98), 131137 (1984).Google Scholar
55. Nilsson, L., Lund Inst. Technology, Rep. TVBM-1003 (1980).Google Scholar
56. Sorensen, E., Tech. Univ. Denmark, Dept. Civil Eng., Tech. Rep. 83/80 (1980).Google Scholar
57. Haggmassy, J. and Brunauer, S., J. Colloid Interface Sci. 33(2), 317327 (1970).CrossRefGoogle Scholar
58. Powers, T. and Brownyard, T., Studies of the Physical Properties of Hardened Portland Cement Paste, Bulletin 22 (Portland Cement Association, Chicago, 1948) 992 pages.Google Scholar
59. Patel, R., Killoh, D. et al. Report PP/455 (Cement and Concrete Association, Wexham Springs, 1987).Google Scholar
60. Steinour, H., J. Amer. Concr. Inst., 31 905907 (1959).Google Scholar
61. Lentz, C., Indust. Chim. Belg., Chemie et Civilization 32(II), 487491 (1967).Google Scholar
62. Jons, E. and Osbaeck, B., Cem. Concr. Res. 12(2), 167178 (1982).Google Scholar
63. Kondo, R., Daimon, M. and Akiba, T., Proc. 5th Int. Symp. Chem. Cem., Tokyo, 1968 3, 402409 (1968).Google Scholar