Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T02:13:46.773Z Has data issue: false hasContentIssue false

Integration of Top-Down and Bottom-Up Nanofabrication Schemes

Published online by Cambridge University Press:  26 February 2011

Pascale Maury
Affiliation:
p.a.maury@utwente.nl
Olga Crespo-Biel
Affiliation:
o.crespobiel@utwente.nl
Maria Peter
Affiliation:
m.peter@utwente.nl
David N. Reinhoudt
Affiliation:
d.n.reinhoudt@utwente.nl
Jurriaan Huskens
Affiliation:
j.huskens@utwente.nl
Get access

Abstract

The fabrication of 3D nanostructures, which have tunable, sub-100 nm dimensions in all three directions, is a key issue of nanotechnology. Here we describe the integration of top-down nanoimprint lithography (NIL) and bottom-up layer-by-layer (LBL) assembly for the preparation of 3D hybrid nanostructures. NIL provided down to sub-100 nm poly(methylmethacrylate) (PMMA) structures. These were employed to fabricate patterned self-assembled monolayers of cyclodextrin (CD) host molecules on silicon oxide . The consecutive LBL assembly with adamantyl guest-functionalized dendrimers and CD-modified gold nanoparticles resulted in patterned multilayer structures with thicknesses of 3-30 nm. The x,y control by NIL and the z control by LBL assembly ultimately allowed the fabrication of circular structures with a radius of 25 nm and a thickness of 20 nm. The integration of the two methods has thus yielded a versatile 3D nanofabrication methodology comprising of 10-40 process steps.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Decher, G., Science 1997, 277, 1232.Google Scholar
[2] Liu, J.; Ong, W.; Román, E.; Lynn, M. J.; Kaifer, A. E. Langmuir 2000, 16, 3000;Google Scholar
Liu, J.; Alvarez, J.; Kaifer, A. E. Adv. Mater. 2000, 12, 1381.Google Scholar
[3] Crespo-Biel, O. Juković, A., Karlsson, M., Reinhoudt, D. N., Huskens, J., Isr. J. Chem. 2005, 45,353.Google Scholar
[4] Michels, J. J.; Baars, M. W. P. L.; Meijer, E. W.; Huskens, J.; Reinhoudt, D. N. J. Chem. Soc. Perkin Trans. 2 2000, 1914.Google Scholar
[5] Crespo-Biel, O., Dordi, B., Reinhoudt, D. N., Huskens, J., J. Am. Chem. Soc. 2005, 127, 7594.Google Scholar
[6] (a) Huskens, J., Deij, M. A., Reinhoudt, D. N., Angew. Chem. Int. Ed. 2002, 41, 4467;Google Scholar
(b) Auletta, T., Dordi, B., Mulder, A., Sartori, A., Onclin, S., Bruinink, C. M., Nijhuis, C. A., Beijleveld, H., Péter, M., Schönherr, H., Vancso, G. J., Casnati, A., Ungaro, R., Ravoo, B. J., Huskens, J., Reinhoudt, D. N., Angew. Chem. Int. Ed. 2004, 43, 369;Google Scholar
(c) Onclin, S., Mulder, A., Huskens, J., Ravoo, B. J., Reinhoudt, D. N., Langmuir 2004, 20, 5460.Google Scholar
[7] Maury, P., Péter, M., Mahalingam, V., Reinhoudt, D. N., Huskens, J., Adv. Funct. Mater. 2005, 15, 451.Google Scholar
[8] Maury, P., Escalante, M., Reinhoudt, D. N., Huskens, J., Adv. Mater. 2005, 17, 2718.Google Scholar
[9] Guo, L. J., J. Phys. D, Appl. Phys. 2004, 37, R123.Google Scholar