Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-06T09:16:36.804Z Has data issue: false hasContentIssue false

Structural and Electrical Characterization of Si-Modfet Structures Grown at High Rates by Lepecvd

Published online by Cambridge University Press:  15 March 2011

C. Rosenblad
Affiliation:
Laboratorium für Festkörperphysik, ETH-Zürich, CH-8093 Zürich, Switzerland
M. Kummer
Affiliation:
Laboratorium für Festkörperphysik, ETH-Zürich, CH-8093 Zürich, Switzerland Interstaatliche Fachhochschule für Technik Buchs, CH-9471 Buchs, Switzerland
E. Müller
Affiliation:
Laboratorium für Mikro- und Nanostrukturen, PSI, CH-5232 Villigen, Switzerland
A. Dommann
Affiliation:
Interstaatliche Fachhochschule für Technik Buchs, CH-9471 Buchs, Switzerland
H. Von Künel
Affiliation:
Laboratorium für Festkörperphysik, ETH-Zürich, CH-8093 Zürich, Switzerland
Get access

Abstract

Strain relaxed graded SiGe buffer layers have been grown by low energy plasma enhanced chemical vapour deposition (LEPECVD). Due to the low ion energies involved in LEPECVD, exceptionally high plasma intensities can be applied without any ion damage of the epitaxial layers. Transmission electron microscopy and X-ray reciprocal space mapping show that relaxed buffer layers grown at rates exceeding 5 nm/s are of a comparable quality to buffer layers grown by standard techniques at much lower rates. Low temperature electric transport measurements on remotely doped tensilely strained Si quantum wells synthesized by LEPECVD show that also good electrical quality is achieved.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Peng, C.S., Zhao, Z.Y., Chen, H., Li, J.H., Li, Y.K., Guo, W., Dai, D.Y., Huang, Q., Zhou, J.M., Zhang, Y.H., Sheng, T.T., and Tung, C.H., Appl. Phys. Lett., 72, 3160 (1998).Google Scholar
[2] Fitzgerald, E.A., Xie, Y.-H., Green, M.L., Brasen, D., Kortan, A.R., Michel, J., Mii, Y.-J, and Weir, B.E., Appl. Phys. Lett. 59, 811 (1991).Google Scholar
[3] Ismail, K., Arafa, M., Saenger, K.L, Chu, J.O., and Meyerson, B.S., Appl. Phys. Lett. 66, 1077 (1995).Google Scholar
[4] Rosenblad, C., Deller, H.R., Dommann, A., Meyer, T., Schroeter, P., and Känel, H. von, J. Vac. Sci. Technol. A 16, 2785 (1998).Google Scholar
[5] Rosenblad, C., Deller, H.R., and Känel, H. von, Mat. Sci. Eng. B 58, 76 (1999).Google Scholar
[6] LeGoues, F.K., Meyerson, B.S., and Morar, J.F., Phys. Rev. Lett., 66, 2903 (1991).Google Scholar
[7] Rosenblad, C., Deller, H.R., Döbeli, M., Müller, E., and Känel, H. von, Thin Solid Films 318, 11 (1998).Google Scholar
[8] Sakai, A., Tatsumi, T., Appl. Phys. Lett., 64, 52 (1994).Google Scholar