Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T07:38:43.724Z Has data issue: false hasContentIssue false

Preparation and Characterization of Blends of Polyaniline with Poly(Hydroxybutyrate-Co-Valerate)

Published online by Cambridge University Press:  23 January 2013

David C. da Silva Jr
Affiliation:
Universidade Federal de São Paulo, Instituto de Ciência e Tecnologia, São Paulo, Brazil
Ana Paula Lemes
Affiliation:
Universidade Federal de São Paulo, Instituto de Ciência e Tecnologia, São Paulo, Brazil
Lilia M. Guerrini
Affiliation:
Universidade Federal de São Paulo, Instituto de Ciência e Tecnologia, São Paulo, Brazil
Fernando H. Cristovan*
Affiliation:
Universidade Federal de São Paulo, Instituto de Ciência e Tecnologia, São Paulo, Brazil
Get access

Abstract

In this study the PANI/PHBV blends were prepared and thermal properties, crystallization behavior, microstructure of the blends were investigated. The PANI/PHBV blends were prepared by dissolution of PANI (emeraldine base doped with dodecylbenzenesulphonic acid, DBSA) and PHBV in chloroform and films were obtained by casting. PANI amount in the blend was varied from 0.1 to 1% wt. PANI/PHBV blends were characterized by FTIR spectroscopy and the thermal behavior were analyzed by differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). FTIR spectra of the pure PHBV and PANI/PHBV blend had similar peaks. However, blends spectra show an enlargement of bands, due interaction of the chain PANI with PHBV matrix. The crystallization behaviors were investigated using DSC, with at a scanning rate of 10oCmin−1. Curve of pure PHBV showed two melting peaks (159.1°C and 172.3°C). With the increase of PANI amount in the PHBV matrix, both of the melting peaks became wider and shifted to lower temperatures. The decrease trend of first and second melting points with increase of PANI amount, suggests a reduction in the crystallinity of the blends.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Liu, Q.S., Zhu, M., Wu, W.H., Qin, Z.Y., Polym. Degr. Stability 94, 18 (2009).CrossRefGoogle Scholar
Wu, Q., Wang, Y., Artif. Cell. Blood Sub. 37, 1 (2009).CrossRefGoogle Scholar
Luckachan, G. E., Pillai, C.K.S., J. Polym. Environ. 19, 637 (2011).CrossRefGoogle Scholar
Tokiwa, Y., Calabia, B. P., J. Polym. Environ. 15, 259 (2007).CrossRefGoogle Scholar
Camargo, F. A., Innocentini-Meil, L. H., Lemos, A. P., J. Compos. Mater. 1 (2012).Google Scholar
Gaudio, C. D., Ercolani, E., Nanni, F., Bianco, A., Mater. Sci. Eng. A, 528, 1764 (2011).CrossRefGoogle Scholar
Ferreira, B. M. P., Zavaglia, C. A. C., Duek, E. A. R., J. Appl. Polym. Sci. 86, 2898 (2002).CrossRefGoogle Scholar
Javadia, A., Srithep, Y.,Lee, J., Pilla, S., Clemons, C., Gong, S., Turng, L.S., Comp.: Part A 41, 982 (2010).Google Scholar
Hatchett, D.W., Josowicz, M., Chem. Rev. 108, 746 (2008).CrossRefGoogle Scholar
Janata, , Josowicz, M., Nat. Mater. 2, 19 (2003).CrossRefGoogle Scholar
Cristovan, F. H., Pereira, E. C., Synth. Met. 161, 2041 (2011).CrossRefGoogle Scholar
Koul, S., Chandra, R., Dhawan, S. K., Polymer 41, 9305 (2000).CrossRefGoogle Scholar
Mattioli-Belmonte, M., Giavaresi, G., Biagini, G., Int. J. Artif. Organs. 26, 1077 (2003).CrossRefGoogle Scholar
Cristovan, F. H., de Paula, F. R., Lemos, S. G., De Oliveira, A.J.A., Pereira, E. C., Synth. Met. 159, 2188 (2011).CrossRefGoogle Scholar
Stafstrom, S., Breadas, J. L., Epstein, A.J., Woo, H. S., Tenner, D.B., Huang, W.S., MacDiarmid, A.G., Phys. Rev. Lett. 59, 1464 (1987).CrossRefGoogle Scholar
Buzarovska, A., Grozdanov, E. A., J. Mater. Sci. 44, 1844 (2009).CrossRefGoogle Scholar
Sato, H., Murakami, R., Padermshoke, A., Hirose, F., Senda, K., Noda, I.l., Macromolecules 37, 7203 (2004).CrossRefGoogle Scholar
Matsuura, H., Yoshida, H., Hieda, M., Yumanaka, S., Harada, T., Shinya, K, J. Am. Chem. Soc. 125, 13910 (2003).CrossRefGoogle Scholar
Avella, M., Errico, M. E., Rimedio, R., Sadocco, P., J. Appl. Polym. Sci. 83, 1432 (2001).CrossRefGoogle Scholar
Ferreira, B. M. P., Zavaglia, C. A. C., Duek, E. A. R., J. Appl. Polym. Sci. 86, 2898 (2002).CrossRefGoogle Scholar
Shang, L., Fei, Q., Zhang, Y.H., Wang, X. Z., Fan, D., Chang, H. N., J. Polym. Env. 20, 23 (2012).CrossRefGoogle Scholar
Chen, C., J. Polym. Resear. 9, 195 (2002).CrossRefGoogle Scholar
Cortés, M.T., Sierra, V.. Polym. Bull. 56, 37 (2006).CrossRefGoogle Scholar
Site: www.sigmaaldrich.com. Acess: 11/09/12.Google Scholar
Galdio, C. D., Ercolani, E., Nanni, F., Bianco, A., Mat. Sci. Eng. A (2011) 1764.Google Scholar
Dining, L., Gregory, R.V., Synth. Met. 104, 73 (1999).CrossRefGoogle Scholar
Tsotcheva, D., Tsanov, T., Terlemezyan, L., Vassilev, S., J. Therm. Anal. Calorim. 63, 133 (2001).CrossRefGoogle Scholar