Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T04:41:52.305Z Has data issue: false hasContentIssue false

Analysis on interface layer between Pt electrode and ferroelectric layer of solution-processed PZT capacitor

Published online by Cambridge University Press:  12 July 2011

Thanh V Pham
Affiliation:
Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
Trinh N Q Bui
Affiliation:
Japan Science and Technology Agency, ERATO, Shimoda Nano-Liquid Process Project, 2-5-3 Asahidai, Nomi, Ishikawa 923-1211, Japan.
Tue T Phan
Affiliation:
Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
Takaaki Miyasako
Affiliation:
Japan Science and Technology Agency, ERATO, Shimoda Nano-Liquid Process Project, 2-5-3 Asahidai, Nomi, Ishikawa 923-1211, Japan.
Eisuke Tokumitsu
Affiliation:
Japan Science and Technology Agency, ERATO, Shimoda Nano-Liquid Process Project, 2-5-3 Asahidai, Nomi, Ishikawa 923-1211, Japan. Precision and Intelligence Laboratory, Tokyo Institute of Technology, 4259-R2-19 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
Tatsuya Shimoda
Affiliation:
Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan. Japan Science and Technology Agency, ERATO, Shimoda Nano-Liquid Process Project, 2-5-3 Asahidai, Nomi, Ishikawa 923-1211, Japan.
Get access

Abstract

Pt/Pb(Zr0.4Ti0.6)O3 (PZT)/Pt capacitors were prepared by the sol-gel technique and their electric properties were analyzed. The asymmetry of polarization-electric field (P-E) and capacitor-voltage (C-V) curves exhibits existence of an interface layer (dead-layer) between top Pt electrode and PZT thin film. By conducting temperature dependant measurement, the Pt/PZT/Pt capacitor was confirmed to be Schottky emission conduction. In addition, barrier height of PZT contact calculated 0.67eV. On basic a series capacitors model and Schottky contact of Pt/PZT interface, the thickness and the dielectric constant of this dead-layer were estimated to be 6.4 nm and 170, respectively. Moreover, the dielectric constant of 900 was obtained for the real PZT ferroelectric layer. The existence of the dead-layer was also confirmed by the high resolution transmission electron microscopy (HR-TEM) observation and the energy dispersive X-ray (EDX) analysis on PZT ferroelectric layer in the Pt/PZT/Pt structure. Based on EDX analysis result, a 10-nm layer at Pt/PZT contact was suggested to be the dead-layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Scott, J. F., Kammerdiner, L., Parris, M., Traynor, S., Ottenbacher, V., Shawabkeh, A., and Oliver, W. F., J. Appl. Phys., 64, 787 (1988).Google Scholar
2. Okuyama, M., Matsui, Y., Nakamo, H., Hamakawa, Y., Ferroelectrics 33, 235 (1981).Google Scholar
3. Chen, B., Yang, H., Zhao, L., Miao, J., Xu, B., Qiu, X. G., Zhao, B. R., Qi, X. Y., and Duan, X. F., Appl. Phys. Lett., 84, No 4, 583 (2004).Google Scholar
4. Larsen, P.K., Dormans, G. J. M., Taylor, D. J., and van Veldhoven, P. J., J. Appl. Phys., 76, 2045 (1994).Google Scholar
5. Nguyen, M. D., Steenwelle, R. J. A., te Rieale, P. M., Dekkers, J. M., Blank, D. H. A., and Rijnders, G., 4th IEEE international conference on nano/micro engineered and molecular systems, vols. 1 and 2, 649, (2009).Google Scholar
6. Boerasu, I., Pintilie, L., Pereira, M., Vasilevskiy, M. I., and Gomes, M. J. M., J. Appl. Phys., 93, No. 8, 4776 (2003).Google Scholar
7. Tue, P. T., Miyasako, T., Trinh, B. N. Q., Li, J., Tokumitsu, E., Shimoda, T., Ferroelectrics 405, 281 (2010).Google Scholar
8. Huang, Z., Zhang, Q., and Whatmore, R. W., J. Appl. Phys., 86, 1662 (1999).Google Scholar
9. Liang, R.T., Tao, Z.L., Tian, L. L., and Jian, L. Z., J. Phys. D, 33, L77.Google Scholar
10. Pintilie, L., Vrejoiu, I., Hesse, D., LeRhun, G., and Alexe, M., Phys. Rev. B, 75, 104103 (2007).Google Scholar
11. Hwang, C. S., Lee, B. T., Kang, C. S., Lee, K. H., Cho, H.-J., Hideki, H., Kim, W. D., Lee, S. I., and Lee, M. Y., J. Appl. Phys., 85, 287 (1999).Google Scholar
12. Yang, Y. S., Lee, S., Ki, S.H., Chae, B.G., and Jang, M.S., J. App. Phys., 84, 5005 (1998).Google Scholar
13. Stolichnov, I. and Tagantsev, A., J. Appl. Phys., 84, 3216 (1998).Google Scholar
14. Pi-chun Juan, Trevor, Chen, Si-min, and Lee Ya-min, Joseph, J. Appl. Phys., 95, 3120 (2004).Google Scholar
15. Shin, J. C., Hwang, C. S., and Kim, H. J., Appl. Phys. Lett., 75, 3411 (1999).Google Scholar
16. Mihara, Takashi and Watanabe, Hitoshi, Jpn. J. Appl. Phys., 34, 5674 (1995).Google Scholar