Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T05:03:42.778Z Has data issue: false hasContentIssue false

Influence of Pressure and Plasma Potential on High Growth Rate Microcrystalline Silicon Grown by Vhf Pecvd

Published online by Cambridge University Press:  01 February 2011

A. Gordijn
Affiliation:
Utrecht University, Debye Institute, SID-Physics of Devices, PO box 80.000, 3508 TA Utrecht, The Netherlands
J. Francke
Affiliation:
Utrecht University, Debye Institute, SID-Physics of Devices, PO box 80.000, 3508 TA Utrecht, The Netherlands
L. Hodakova
Affiliation:
Dept. Optical Crystals, Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, CZ-16253 Prague 6, Czech Republic
J.K. Rath*
Affiliation:
Utrecht University, Debye Institute, SID-Physics of Devices, PO box 80.000, 3508 TA Utrecht, The Netherlands
R.E.I. Schropp
Affiliation:
Utrecht University, Debye Institute, SID-Physics of Devices, PO box 80.000, 3508 TA Utrecht, The Netherlands
*
*corresponding author: j.k.rath@phys.uu.nl
Get access

Abstract

Microcrystalline silicon (μc-Si) based single junction solar cells are deposited by VHF PECVD using a showerhead cathode at high pressures in depletion conditions. At a deposition rate of 4.5 nm/s, a stabilized conversion efficiency of 6.7 % is obtained for a single junction solar cell with a μc-Si i-layer of 1 μm. The i-layer is made near the transition from amorphous to crystalline. In order to control the material properties in the growth direction, the hydrogen dilution of silane in the gas phase is graded following different profiles with a parabolic shape. It is observed that the performance of solar cells deposited at high rate improves under light soaking conditions at 50 °C, which we attribute to post deposition equilibration of a fast deposited transition material.

The performance is lower at higher rates due to poorer i-layer quality (higher defect density), which may be attributed to smaller relaxation times for growth precursors at the growth surface and the higher energy ion bombardment at higher plasma power. High process pressures can be used to reduce the ion energy by decreasing the mean free path. We have introduced an additional method to limit the ion energy by controlling the DC self bias voltage using an external power source. In this way the quality of the μc-Si layers and the performance of the solar cells is further improved.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Vetterl, O., Finger, F., and Wagner, H., Sol. Energ. Mat. Sol. C. 62, 97 (2000).10.1016/S0927-0248(99)00140-3Google Scholar
[2] Rech, B., Roschek, T., Repmann, T., Müller, J., Schmitz, R., and Appenzeller, W., Thin Solid Films 427, 157 (2003).10.1016/S0040-6090(02)01210-5Google Scholar
[3] Yamamoto, K., Nakajima, A., and Tawada, Y., Solar Energy 77 (6), 939 (2004).10.1016/j.solener.2004.08.028Google Scholar
[4] Shah, A.V., Meier, J., and Graf, U., Sol. Energ. Mat. Sol. C. 78, 469 (2003).10.1016/S0927-0248(02)00448-8Google Scholar
[5] Matsuda, A., J. Non-Cryst. Solids 338-340, 1 (2004).10.1016/j.jnoncrysol.2004.02.012Google Scholar
[6] Meier, J., Fluckiger, R., Keppner, H., and Shah, A., Appl. Phys. Lett. 65 (7), 860 (1994).10.1063/1.112183Google Scholar
[7] Fukawa, M., Suzuk, S., and Matsuda, A., Sol. Energ. Mat. Sol. C. 66, 217 (2001).10.1016/S0927-0248(00)00176-8Google Scholar
[8] Mai, Y., Klein, S., and Finger, F., Appl. Phys. Lett. 85 (14), 2839 (2004).10.1063/1.1801676Google Scholar
[9] Guo, L., Kondo, M., and Matsuda, A., Jpn. J. Appl. Phys. 37, L1116 (1998).10.1143/JJAP.37.L1116Google Scholar
[10] Kondo, M., and Matsuda, A., Curr. Opin. Solid St. M. 6, 445 (2002).10.1016/S1359-0286(02)00113-4Google Scholar
[11] Müller, J., Rech, B., Springer, J., and Vanìèek, M., Solar Energy 77 (6), 917 (2004).10.1016/j.solener.2004.03.015Google Scholar
[12] Kluth, O., Rech, B., Houben, L., Wieder, S., Schöpe, G., Beneking, C., and Wagner, H., Thin Solid Films 351, 247 (1999).10.1016/S0040-6090(99)00085-1Google Scholar
[13] Yan, B., Yue, G., and Jiang, C.-S., Appl. Phys. Lett. 85 (11), 1955 (2004).10.1063/1.1788877Google Scholar
[14] Vanìèek, M. and Poruba, A., Appl. Phys. Lett. 80 (5), 719 (2002).Google Scholar
[15] Vanìèek, M., Poruba, A., and Shah, A., J. Non-Cryst. Solids 266-269, 519 (2000).Google Scholar
[16] Matsuda, A., J. Non-Cryst. Solids 59-60, 767 (1983).10.1016/0022-3093(83)90284-3Google Scholar
[17] Kondo, M., Fukawa, M., and Matsuda, A., J. Non-Cryst. Sol. 266, 84 (2000).10.1016/S0022-3093(99)00744-9Google Scholar
[18] Hamers, E.A.G., Morral, A. Fontcuberta i, and Cabarrocas, P. Roca i, J. Appl. Phys. 88 (6), 3674 (2000).10.1063/1.1289523Google Scholar