Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T04:47:27.898Z Has data issue: false hasContentIssue false

Reversible Degradation of Photoluminescence in Si/SiGe Three Dimensional Nanostructures

Published online by Cambridge University Press:  12 April 2012

Nikhil Modi
Affiliation:
Department of Electrical and Computer Engineering, New Jersey Institute of Technology, 106 Warren St, Newark, NJ 07102, U.S.A.
Leonid Tsybeskov
Affiliation:
Department of Electrical and Computer Engineering, New Jersey Institute of Technology, 106 Warren St, Newark, NJ 07102, U.S.A.
David J. Lockwood
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, ON K1A 0R6, Canada
Xiao Z. Wu
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, ON K1A 0R6, Canada
Jean Marc Baribeau
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, ON K1A 0R6, Canada
Get access

Abstract

We report the degradation of low temperature photoluminescence (PL) from Si/SiGe three-dimensional cluster morphology nanostructures under continuous photoexcitation. The PL intensity initially decreases slowly for about 15 minutes, and then decreases rapidly, until only ∼ 10% of the original PL intensity remains. A complete recovery of the PL requires restoring the sample temperature to ∼ 300K. We propose that a slow accumulation of charge in SiGe clusters enhances the rate of Auger recombination and results in the observed PL degradation.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tsybeskov, L. and Lockwood, D. J., Proceedings of the IEEE 97, 1284 (2009).Google Scholar
2. Modi, N., Tsybeskov, L., Lockwood, D. J., Wu, X. Z. and Baribeau, J.-M., 2010 MRS Fall Meeting, Boston, MA, 2010.Google Scholar
3. Fauchet, P. M., von Behren, J., Hirschman, K. D., Tsybeskov, L. and Duttagupta, S. P., Physica Status Solidi A 165, 3 (1998).Google Scholar
4. Street, R. A., Physical Review B: Solid State 17, 3984 (1978).Google Scholar
5. Mollot, F., Cernogora, J. and Benoit a la Guillaume, C., Journal of Non-Crystalline Solids 35-36, 939 (1980).Google Scholar
6. Mott, N. F. and Davis, E. A., Electronic processes in non-crsytalline materials, 2nd ed. (Oxford University Press, New York, 1979).Google Scholar
7. Chepic, D. I., Efros, A. L., Ekimov, A. I., Ivanov, M. G., Kharchenko, V. A., Kudriavtsev, I. A. and Yazeva, T. V., Journal of Luminescence 47, 113 (1990).Google Scholar
8. Taylor, P. C., Strom, U. and Bishop, S. G., Philosophical Magazine B: Physics of Condensed Matter: Statistical Mechanics, Electronic, Optical and Magnetic Properties 37, 241 (1978).Google Scholar
9. Lee, E.-K., Lockwood, D. J., Baribeau, J.-M., Bratkovsky, A. M., Kamins, T. I. and Tsybeskov, L., Physical Review B: Condensed Matter and Materials Physics 79, 233307 (2009).Google Scholar
10. Baribeau, J.-M., Wu, X., Rowell, N. L. and Lockwood, D. J., Journal of Physics: Condensed Matter 18, 36 (2006).Google Scholar
11. Davies, G., Physical Reports 176, 83 (1989).Google Scholar
12. Efros, A. L. and Rosen, M., Physical Review Letters 78, 1110 (1997).Google Scholar
13. Dabbousi, B. O., Rodriguez-Viejo, J., Mikulec, F. V., Heine, J. R., Mattoussi, H., Ober, R., Jensen, K. F. and Bawendi, M. G., Journal of Physical Chemistry B 101, 9463 (1997).Google Scholar
14. Baier, T., Mantz, U., Thonke, K., Sauer, R., Schaeffler, F. and Herzog, H.-J., Physical Review B: Condensed Matter 50, 15191 (1994).Google Scholar
15. Kamenev, B. V., Tsybeskov, L., Baribeau, J.-M. and Lockwood, D. J., Applied Physics Letters 84, 1293 (2004).Google Scholar
16. Grillot, P. N., Ringel, S. A., Fitzgerald, E. A., Watson, G. P. and Xie, Y. H., Journal of Applied Physics 77, 676 (1995).Google Scholar