Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T22:56:04.746Z Has data issue: false hasContentIssue false

pH-dependent Gelation of Gastric Mucin

Published online by Cambridge University Press:  26 February 2011

Rama Bansil
Affiliation:
rb@bu.edu, Boston University, 590 Commonwealth Ave., Physics Dept., Boston University, Boston, MA, 02215, United States
Jonathan Celli
Affiliation:
celli@buphy.bu.edu, United States
Benard Chasan
Affiliation:
bc@bu.edu, United States
Shyamsundar Erramilli
Affiliation:
shyam@bu.edu
Zhenning Hong
Affiliation:
hongzn@buphy.bu.edu
Nezam H. Afdhal
Affiliation:
nafdhal@bidmc.harvard.edu
K.Ramakrishnan Bhaskar
Affiliation:
kbhaskar@bidmc.harvard.edu
Bradley S Turner
Affiliation:
nafdhal@bidmc.harvard.edu
Get access

Abstract

We discuss the mechanism by which gastric mucin forms a gel at low pH, which serves to protect the stomach from being damaged by the acidic gastric juice that it secretes. Frequency dependence of viscoelastic moduli of pig gastric mucin gels obtained by microscopic dynamic light scattering is presented. Atomic Force Microscopy provides direct visual evidence to indicate that mucin broken into its subunits does not gel at low pH.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Monmaney, T., “Marshall's HunchNew Yorker pp. 6471, Sep. 1993.Google Scholar
2. Allen, A., in Physiology of the Gastrointestinal Tract, Edited by Johnson, L.R., (Raven Press, New York (1981)), 1, 617639.Google Scholar
3. Bhaskar, K.R., Gong, D., Bansil, R., Pajevic, S., Hamilton, J.A., Turner, B.S., LaMont, J.T., Am. J. Physiol. 261, G827–G832 (1991).Google Scholar
4. Cao, X., Bansil, R., Bhaskar, K.R., Turner, B.S., LaMont, J.T., Niu, N., Afdhal, N.H., Biophys. J. 76, 12501258 (1999).Google Scholar
5. Celli, J., Gregor, B., Turner, B., Afdhal, N. H., Bansil, R., Erramilli, S., Biomacromolecules 6(3), 13291333 (2005).Google Scholar
6. Hong, Z., Chasan, B., Bansil, R., Turner, B., Bhaskar, K., Afdhal, N., Biomacromolecules, 6, 34583466 (2005).Google Scholar
7. Bhaskar, K.R., Garik, P., Turner, B.S., Bradley, J. D., Bansil, R., Stanley, H. E., LaMont, J.T., Nature 360 (6403), 458461 (1992).Google Scholar
8. Waigh, T., Papagiannopoulos, A., Voice, A., Bansil, R., Unwin, A., Dewhurst, C., Turner, B.S, Afdhal, N.H., Langmuir 18(19), 71887195 (2002).Google Scholar
9. Bansil, R., Stanley, H.E., LaMont, J.T., Annual Review of Physiology 57, 635657 (1995).Google Scholar
10. Bansil, R. and Turner, B.S., Current Opinions in Colloid and Interface Science, 2005 (in press).Google Scholar
11. Holm, L. and Flemstrom, G., J. Int. Med. 28 (suppl), 9195 (1990).Google Scholar
12. Johansson, M., Synnerstad, I., Holm, L., Gastroenterology 119, 12971304 (2000).Google Scholar
13. Bhaskar, K.R. and Reid, L., J. Biol. Chem. 256, 75837589 (1981).Google Scholar
14. Kočevar-Nared, J., Kristl, J., Šmid-Korbar, J., Biomaterials 18(9), 677681 (1997).Google Scholar
15. Mason, T.G. and Weitz, D.A., Phys. Rev. Lett. 74, 12501253 (1995).Google Scholar
16. Dawson, M., Krauland, E., Wirtz, D., Hanes, J., Biotechnology Progress 20(3), 851857 (2004).Google Scholar
17. Sellers, L.A., Allen, A., Morris, E.R., Ross-Murphy, S.B., Biorheology 24, 615623 (1987).Google Scholar
18. Brayshaw, D., Berry, M., McMaster, T., Nanotechnology 15(11), 13911396 (2004).Google Scholar
19. McMaster, T., Berry, M., Corfield, A., Miles, M., Biophysical Journal 77(1), 533541 (1999).Google Scholar