Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-11T16:38:08.135Z Has data issue: false hasContentIssue false

Bisperfluorophenyl-Substituted Thiophene Oligomers. Organic Semiconductors with Complementary-Type Carrier Mobility

Published online by Cambridge University Press:  11 February 2011

Antonio Facchetti
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208–3113, USA.
Howard E. Katz
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA.
Tobin J. Marks
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208–3113, USA.
Get access

Abstract

The design, synthesis, and properties of two mixed perfluorophenyl-thiophene oligomers 5,5″′-diperfluorophenyl-2,2′:5′,2″:5″,2″′:5″′,2″″:5″″,2″″′-quaterthiophene (2) and 5,5′-bis{1-[4-(thien-2-yl)-2,3,5,6-tetrafluorophenyl)] }-2,2′-dithiophene (3) are presented. Molecular characterization included the following techniques: multinuclear NMR, DSC and TGA, optical UV-Vis and photoluminescence spectroscopy, and cyclic voltammetry. Thin films can be easily grown by vacuum evaporation and have been characterized by optical UV-Vis and photoluminescence, XRD, and field-effect transistor measurements. Electron and hole mobilities of 0.06–0.08 cm2/(V s) and 0.001–0.003 cm2/(V s) were found for 2 and 3, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Pope, M., Swenberg, C. E., in Electronic Processes in Organic Crystals and Polymers, Oxford University Press, Oxford 1999.Google Scholar
Dimitrakopoulos, C. D., Malenfant, P. R. L., Adv. Mater. 14, 99, (2002).Google Scholar
[2] (a) Pappenfus, T. M., Chesterfield, R. J., Frisbie, C., Daniel, M., Kent, R., Casado, J., Raff, J. D., Miller, L. L., J. Am. Chem. Soc. 124, 4184, (2002).Google Scholar
(b) Malenfant, P. R. L., Dimitrakopoulos, C. D., Gelorme, J. D., Kosbar, L. L., Graham, T. O., Curioni, A., Andreoni, W., Appl. Phys. Lett. 80, 2517, (2002).Google Scholar
(c) Katz, H. E., Johnson, J., Lovinger, A. J., Li, W., J. Am. Chem. Soc. 122, 7787, (2000).Google Scholar
(d) Crone, B., Dodabalapur, A., Lin, Y. Y., Filas, R. W., Bao, Z., LaDuca, A., Sarpeshkar, R., Katz, H. E., Li, W., Nature 403, 521, (2000).Google Scholar
(e) Heidenhain, S. B., Sakamoto, Y., Suzuki, T., Miura, A., Fujikawa, H., Mori, T., Tokito, S., Taga, Y., J. Am. Chem. Soc 122, 10240, (2000).Google Scholar
(f) Facchetti, A., Deng, Y., Wang, A., Koide, Y., Sirringhaus, H., Marks, T. J., Friend, R. H., Angew. Chem., Int. Ed. 39, 4547, (2000).Google Scholar
[3]. Measurements were performed under nitrogen in a one-compartment cell with C disk working electrode, bare Ag reference, and Pt wire counter electrodes. Dry n-Bu4NPF6 (0.1 M) was used as electrolyte and ferrocene as internal standard. For detail seeGoogle Scholar
Bard, A. J., Faulkner, L. R., Electrochemical Methods–Fundamentals and Applications, Wiley: New York, 1984.Google Scholar
[4] (a) Fichou, D., J. Mater. Chem. 10, 571, (2000).Google Scholar
(b) Lovinger, A. J., Rothberg, L. J., J. Mater. Res. 11, 1581, (1996).Google Scholar