Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-10T06:47:02.963Z Has data issue: false hasContentIssue false

Thermoelectric Properties of Semiconducting Intermetallic Compounds: FeGa3 and RuGa3

Published online by Cambridge University Press:  01 February 2011

Y. Amagai
Affiliation:
Department of Material Science and Technology, Tokyo University of Science (TUS), Japan Energy Electronics Institute, National Institute of Advanced Industrial Science and Technology (AIST), Japan
A. Yamamoto
Affiliation:
Energy Electronics Institute, National Institute of Advanced Industrial Science and Technology (AIST), Japan
C. H. Lee
Affiliation:
Energy Electronics Institute, National Institute of Advanced Industrial Science and Technology (AIST), Japan
H. Takazawa
Affiliation:
Energy Electronics Institute, National Institute of Advanced Industrial Science and Technology (AIST), Japan
T. Noguchi
Affiliation:
Energy Electronics Institute, National Institute of Advanced Industrial Science and Technology (AIST), Japan
H. Obara
Affiliation:
Energy Electronics Institute, National Institute of Advanced Industrial Science and Technology (AIST), Japan
T. Iida
Affiliation:
Department of Material Science and Technology, Tokyo University of Science (TUS), Japan
Y. Takanashi
Affiliation:
Department of Material Science and Technology, Tokyo University of Science (TUS), Japan
Get access

Abstract

We report transport properties of polycrystalline TMGa3 (TM = Fe and Ru) compounds in the temperature range 313K<T<973K. These compounds exhibit semiconductorlike behavior with relatively high Seebeck coefficient, electrical resistivity, and Hall carrier concentrations at room temperature in the range of 1017 - 1018cm−3. Seebeck coefficient measurements reveal that FeGa3 is n -type material, while the Seebeck coefficient of RuGa3 changes signs rapidly from large positive values to large negative values around 450K. The thermal conductivity of these compounds is estimated to be 3.5Wm−1K−1 at room temperature and decreased to 2.5Wm−1K−1 for FeGa3 and 2.0Wm−1K−1 for RuGa3 at high temperature. The resulting thermoelectric figure of merit, ZT, at 945K for RuGa3 reaches 0.18.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sales, B. C., Mandrus, D., and Williams, R. K., Science 272, 1325 (1996).Google Scholar
2. Nolas, G. S., Cohn, J. L., Slack, G. A., and Schujman, S. B., Appl. Phys. Lett. 73, 178(1998).Google Scholar
3. Cohn, J. L., Nolas, G. S., Fessatidis, V., Metcalf, T. H., and Slack, G. A., Phys. Rev. Lett. 82 779(1999).Google Scholar
4. Mastronardi, K., Young, D., Wang, C.-C., Khalifah, P., Cava, J., and Ramirez, A. P., Appl. Phys. Lett. 74, 1415 (1999).Google Scholar
5. Uher, C., Yang, J., Hu, S., Morelli, D. T., and Meisner, G. P., Phys. Rev. B59, 8615 (1999).Google Scholar
6. Hohl, H., Ramirez, A. P., Goldman, C., Ernst, G., Wolfing, B., and Bucher, E., J. Phys.: Condens. Matter 11, 1697(1999).Google Scholar
7. Young, D. P., Khalifh, P., and Cava, J., J. Appl. Phys. 87 317 (2000).Google Scholar
8. Terasaki, I., Sasago, Y., and Uchinokura, K., Phys. Rev. B56, 12685 (1997).Google Scholar
9. Häussermann, U., Boström, M., Viklund, P., Rapp, Ö., and Björnängen, T. J. Solid State Chem. 164, 94 (2002)Google Scholar
10. Mahan, G. D. and Sofo, J.O., Proc. Natl. Acad. Sci. USA 93, 7436 (1996).Google Scholar
11. Nolas, G. S., Sharp, J., and Goldsmid, H. J., Thermoelectrics Basic Principles and New Materials developments (Springer 2001) pp. 95.Google Scholar