Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-12T09:05:33.360Z Has data issue: false hasContentIssue false

Path to Strong Insulating Transport Properties in Bulk AlPdRe Samples

Published online by Cambridge University Press:  01 February 2011

Ralph Rosenbaum
Affiliation:
Tel Aviv University, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Ramat Aviv, 69978, Israel
Yuan-Liang Zhong
Affiliation:
National Tsing Hua University, Department of Physics, Hsinchu, 300, Taiwan Academia Sinica, Institute of Physics, Taipei, 115, Taiwan
Juhn-Jong Lina
Affiliation:
National Chiao Tung University, Institute of Physics, Hsinchu 300, Taiwan
Get access

Abstract

Electronic transport measurements have been made on bulk icosahedral Al70Pd22.5Re7.5 quasicrystal (QC's) samples, having increasingly larger resistance temperature ratios, rT = R(4.2 K)/R(292 K). Data were taken between 0.023 K to 292 K and in magnetic fields up to 17.9 T. Both the zero field resistivity and the magnetoresistance (MR) changed from metallic behavior to weakly insulating behavior to highly insulating behavior, as the resistance temperature ratios rT's of the samples were made larger. For the insulating samples, the resistivities ρ's followed simple inverse temperature power laws above 50 K going as ρ(T) = a0/Tz, where z = 1 ± 0.1.The insulating QC samples exhibited saturation behaviors of their resistivities below 2 K. Below 0.3 K, the strongly insulating QC's displayed activated variable-range hopping (VRH) laws in their conductivity; the hopping exponents y's in the VRH laws varied between 0.19 ≤ y ≤ 0.43. A simple model including conductivity contributions both from the primary insulating QC phase and from a secondary metallic phase yielded good fits to the resistivity and MR data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tsai, A. P., Inoue, A., Yokiyama, Y. and Masumoto, T., Mater. Trans. Japan Inst. Met. 31, 98 (1990).Google Scholar
2. Pierce, F. S., Poon, S. J. and Guo, Q., Science 261, 737 (1993).Google Scholar
3. Akiyama, H., Honda, Y., Hashimoto, T., Edagawa, K. and Takeuchi, S., Japan. J. Appl. Phys. 2, L1003 (1993).Google Scholar
4. Pierce, F. S., Guo, Q. and Poon, S. J., Phys. Rev. Lett. 73, 2220 (1994).Google Scholar
5. Ahlgren, M., Gignoux, C., Rodmar, M., Berger, C. and Rapp, Ö, Phys. Rev. B 55, R11915 (1997).Google Scholar
6. Rodmar, M., Ahlgren, M., Oberschmidt, D., Gignux, C., Delahaye, J., Berger, C., Poon, S. J., and Rapp, Ö, Phys. Rev. B 61, 3936 (2000).Google Scholar
7. Srinivas, V., Rodmar, M., Poon, S. J., Rapp, Ö, Phys. Rev. B 63, 172202/1 (2001).Google Scholar
8. Srinivas, V., Rodmar, M., Konig, R., Poon, S. J. and Rapp, Ö, Phys. Rev. B 65, 094206/1 (2002).Google Scholar
9. Guo, Q. and Poon, S. J., Phys. Rev. B 54, 12793 (1996).Google Scholar
10. Rodmar, M., Oberschmidt, D., Ahlgren, M., Gignoux, C., Delahaye, J., Berger, C., Poon, S. J. and Rapp, Ö, Crystalline Solids 250–252, 883 (1999).Google Scholar
11. Lin, C. R., Lin, S. T., Wang, C. R., Chou, S. L., Horng, H. E., Cheng, J. M., Yao, Y. D. and Lai, S. C., J. Phys.: Condens. Matter 9, 1509 (1997).Google Scholar
12. Wang, C. R. and Lin, S. T., J. Phys. Soc. Japan. 68, 3988 (1999).Google Scholar
13. Rosenbaum, R., Lin, S-T and Su, T-I, J. Phys.: Condens. Matter 15, 4169 (2003).Google Scholar
14. Baxter, D., et al., J. Physique 50, 1673 (1989) and references within.Google Scholar
15. Ousset, J. C., et al., J. Physique 46. 2145 (1985) and references within.Google Scholar
16. Janot, C., Phys. Rev. B 53, 181 (1996).Google Scholar
17. Rosenbaum, R., Castro, H. and Schoepe, W., Physica B 294–295, 486 (2001).Google Scholar