Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T23:07:54.641Z Has data issue: false hasContentIssue false

PROBING FRICTION FORCES USING GECKO MATERIALS

Published online by Cambridge University Press:  25 May 2012

J. B. Puthoff
Affiliation:
Department of Biology, Lewis & Clark College, Portland, OR 97219, USA
M. Holbrook
Affiliation:
Department of Physics, Lewis & Clark College, Portland, OR 97219, USA
M. J. Wilkinson
Affiliation:
Department of Biology, Lewis & Clark College, Portland, OR 97219, USA
K. Autumn
Affiliation:
Department of Biology, Lewis & Clark College, Portland, OR 97219, USA
Get access

Abstract

Geckos can cling to almost any surface using dense arrays of microscopic hierarchical hairs called setae. The flat, regular, terminal branches of the setae adhere by the van der Waals dispersion force, and the mechanics of the gecko attachment scheme are a current topic among biologists and researchers in smart materials for adhesion. We studied the friction behavior of natural gecko arrays. Our experiments demonstrate the presence of velocity strengthening dynamic friction over the range of velocities from 5×10–4 to 158 mm/s and a range of specimen elastic moduli from 1.1 to 3.6 GPa. From these dynamic experiments, we calculate low-v activation volumes between 1500 and 3000 nm3. Since these volumes are 3 orders of magnitude larger then are typical for bulk materials, we conclude that there is weak coupling between individual sliding contacts in the gecko system.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Autumn, K. and Gravish, N., Phil. Trans. R. Soc. A 366: 15751590 (2008).10.1098/rsta.2007.2173Google Scholar
2. Autumn, K., et al. ., Proc. Natl. Acad. Sci. USA 99: 1225212256 (2002).10.1073/pnas.192252799Google Scholar
3. Autumn, K., et al. ., J. Exp. Biol. 209: 35693579 (2006).10.1242/jeb.02486Google Scholar
4. Russell, A.P., Integr. Comp. Biol. 42: 11541163 (2002).10.1093/icb/42.6.1154Google Scholar
5. Hansen, W.R. and Autumn, K., Proc. Natl. Acad. Sci. USA 102: 385389 (2005).10.1073/pnas.0408304102Google Scholar
6. Autumn, K., et al. ., J. Exp. Biol. 209: 35583568 (2006).10.1242/jeb.02469Google Scholar
7. Russell, A.P. and Johnson, M.K., Can. J. Zoolog. 85: 12281238 (2007).10.1139/Z07-103Google Scholar
8. Geim, A.K., et al. ., Nat. Mater. 2: 461463 (2003).10.1038/nmat917Google Scholar
9. Sitti, M. and Fearing, R.S., Proceedings of the 2nd IEEE Conference on Nanotechnology 137140 (2002).10.1109/NANO.2002.1032153Google Scholar
10. Bhushan, B., J. Adhes. Sci. Technol. 21: 12131258 (2007).10.1163/156856107782328353Google Scholar
11. Bowden, F.P. and Tabor, D., The Friction and Lubrication of Solids. 2001, Oxford, UK: Oxford University Press.Google Scholar
12. Gravish, N., et al. ., J. R. Soc. Interface 7: 259269 (2010).10.1098/rsif.2009.0133Google Scholar
13. Reiner, M., Physics Today 17: 62 (1964).10.1063/1.3051374Google Scholar
14. Prowse, M., et al. ., Acta Biomater. 7: 733738 (2011).10.1016/j.actbio.2010.09.036Google Scholar
15. Gravish, N., Wilikinson, M., and Autumn, K., J. R. Soc. Interface 5: 339348 (2008).10.1098/rsif.2007.1077Google Scholar
16. Baumberger, T., Berthoud, P., and Caroli, C., Phys. Rev. B 60: 39283939 (1999).10.1103/PhysRevB.60.3928Google Scholar
17. Schallamach, A., Wear 6: 375382 (1963).10.1016/0043-1648(63)90206-0Google Scholar
18. Chen, B., Wu, P., and Gao, H., J. R. Soc. Interface 6: 529537 (2009).10.1098/rsif.2008.0322Google Scholar