Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T02:30:09.251Z Has data issue: false hasContentIssue false

Study of Germanium Diffusion in HfO2 Gate Dielectric of MOS Device Application

Published online by Cambridge University Press:  26 February 2011

Qingchun Zhang
Affiliation:
Silicon Nano Device Lab, Dept of Electrical and Computer Engineering, National University of Singapore, Singapore 119260
Nan Wu
Affiliation:
Silicon Nano Device Lab, Dept of Electrical and Computer Engineering, National University of Singapore, Singapore 119260
L.K. Bera
Affiliation:
Institute of Microelectronics, Singapore, 117685
Chunxiang Zhu*
Affiliation:
Silicon Nano Device Lab, Dept of Electrical and Computer Engineering, National University of Singapore, Singapore 119260
*
Get access

Abstract

Significant germanium incorporation into HfO2 gate dielectrics has been found after thermal annealing in germanium MOS device. The dependences of germanium incorporation in HfO2 with dielectric deposition method, annealing temperature and annealing ambient were extensively studied by means of physical analytical methods such as SIMS and XPS. MOCVD (metal organic chemical vapor deposition) technique shows stronger germanium incorporation than PVD (physics vapor deposition) while surface nitridation of germanium can effectively suppress the Ge-incorporation. In addition, the results indicate that a thermal budget higher than 500°C in device fabrication results in apparent Ge out-diffusion. And the germanium out-diffusion is found to be enhanced under oxygen environment.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Van Elshocht, S., Brijs, B., Caymax, M., Conard, T., Chiarella, T., De Gendt, S., De Jaeger, B., Kubicek, S., Meuris, M., Onsia, B., Richard, O., Teerlinck, I., Van Steenbergen, J., Zhao, C., and Heyns, M., Appl. Phys. Lett. 85, 3824 (2004).Google Scholar
[2] Kita, K., Sasagawa, M., Tmida, K., Kyuno, K. and Toriumi, A., SSDM Tech. Dig. 2003, 292 (2003).Google Scholar
[3] Kang, C.S., Cho, H.J., Choi, R., Kim, Y.H., Kang, C.Y, Rhee, S.J, Choi, C., Akbar, M.S., and Lee, Jack C., IEEE Trans. Electron Device 51, 220 (2004).Google Scholar
[4] Bai, W. P., Lu, N., Liu, J., Ramirez, A., Kwong, D. L., Wristers, D., Ritenour, A., Lee, L., and Antoniadis, D., Symp. VLSI Tech. Dig. 2003, 121 (2003).Google Scholar
[5] Wu, N., Zhang, Q.C, Zhu, C., Yeo, C.C, Wang, S.J., Chan, D.S.H., Li, M.F., Cho, B.J., Chin, Albert, Kwong, D.L, Appl. Phys. Lett. 84, 3741 (2003).Google Scholar
[6] Gebel, T., Rebohle, L., Skorupa, W., Nazarov, A.N., Osiyuk, I.N., and Lysenko, V.S., Appl. Phys. Lett. 81, 2575 (2002).Google Scholar
[7] Fukuda, H., Kobayashi, T., Endoh, T., Nomura, S., Sakai, A., Ueda, Y., Appl. Sur. Sci. 130–132, 776 (1998).Google Scholar
[8] Ho, V., Teo, L.W., Choi, W.K., Chim, W.K., Tay, M.S, Antoniadis, D.A., Fitzgerald, E.A., Du, A.Y, Tung, C.H., Liu, R., and Wee, A.T.S., Appl. Phys. Lett. 83, 3558 (2003).Google Scholar
[9] Wan, Q., Lin, C. L., Liu, W.L., and Wang, T.H., Appl. Phys. Lett. 82, 4708 (2003).Google Scholar
[10] Shang, H., Lee, K.L., Kozlowski, P., Emic, C.D', Babich, I., Sikorski, E., Ieong, M., Wong, H.-S. P., Guarini, K., and Haensch, W., IEEE Electron Device Lett. 25, 135 (2004).Google Scholar