Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T21:49:20.971Z Has data issue: false hasContentIssue false

The effect of anthropogenic disturbance on non-native plant species in Madagascar

Published online by Cambridge University Press:  04 October 2016

A. Andrea Gudiel
Affiliation:
Temple University, Philadelphia, PA, 19122, USA
Shane C. Nieves
Affiliation:
Florida Gulf Coast University, Fort Myers, FL, 33965, USA
Kim E. Reuter*
Affiliation:
Temple University, Philadelphia, PA, 19122, USA
Brent J. Sewall
Affiliation:
Temple University, Philadelphia, PA, 19122, USA
*
1Corresponding author. Email: kimeleanorreuter@gmail.com

Abstract:

Non-native species impact tropical ecosystems, but the role of different anthropogenic disturbances on the success of non-natives remains unclear, especially in island tropical forests. We sought to understand the influence of anthropogenic habitat degradation and disturbance on non-native plant species in Madagascar. Specifically, we evaluated how densities of non-native species of woody shrub (Lantana camara), climber (Mucuna pruriens) and tree (Mangifera indica, Albizia lebbeck, Tamarindus indica) varied with forest habitat degradation and by disturbance type. We surveyed 60400 m2, recording 482 instances of disturbance and 903 non-native plants in and around the Ankarana National Park. Non-native plant densities were higher in degraded than primary forest. Within degraded forest, densities of non-native trees increased with disturbance. Tree densities correlated with extent of tree damage only in Tamarindus indica, never correlated with extent of tree removal, and always correlated with proximity to roads and trails. Our results suggest roads and trails have relatively greater importance in facilitating the success of non-native tree species than structural changes to habitat. In contrast, densities of Lantana camara and Tamarindus indica did not correlate with any measured type of disturbance; other unmeasured or historical factors may be more important drivers of these smaller, faster-reproducing species.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AKAIKE, H. 1973. Information theory and an extension of the maximum likelihood principle. Pp. 267281 in Petrov, B. N. & Csaki, F. (eds.). International Symposium on Information Theory. Akadémia Kiadó, Budapest.Google Scholar
ALSTON, K. P. & RICHARDSON, D. M. 2006. The roles of habitat features, disturbance, and distance from putative source populations in structuring alien plant invasions at the urban/wildland interface on the Cape Peninsula, South Africa. Biological Conservation 132:183198.Google Scholar
ARÉVALO, J. R., OTTO, R., ESCUDERO, C., FERNÁNDEZ-LUGO, S., ARTEAGO, M., DELGADO, J. D. & FERNÁNDEZ-PALACIOS, J. M. 2010. Do anthropogenic corridors homogenize plant communities at a local scale? A case studied in Tenerife (Canary Islands). Plant Ecology 209:2335.Google Scholar
BEAUJARD, P. 2011. The first migrants to Madagascar and their introduction of plants: linguistic and ethnological evidence. Azania – Archaeological Research in Africa 46:169189.Google Scholar
BINGGELI, P. 2003. Introduced and invasive plants. Pp. 257268 in Goodman, S. M. & Benstead, J. P. (eds.). The natural history of Madagascar. The University of Chicago Press, Chicago.Google Scholar
BROWN, K. A. & GUREVITCH, J. 2004. Long-term impacts of logging on forest diversity in Madagascar. Proceedings of the National Academy of Sciences USA 101:60456049.Google Scholar
BURNHAM, K. P. & ANDERSON, D. R. 2002. Model selection and multimodel inference: a practical information-theoretic approach. Springer Science & Business Media, New York. 488 pp.Google Scholar
CARDIFF, S. & BEFOUROUACK, J. 2003. The Réserve Spéciale d'Ankarana. Pp. 15011507 in Goodman, S. M. & Benstead, J. P. (eds.). The natural history of Madagascar. The University of Chicago Press, Chicago.Google Scholar
CLAVERO, M. & GARCÍA-BERTHOU, E. 2005. Invasive species are a leading cause of animal extinctions. Trends in Ecology and Evolution 20:110.CrossRefGoogle ScholarPubMed
DENSLOW, J. S. 2003. Weeds in paradise: thoughts on the invasibility of tropical islands. Annals of the Missouri Botanical Garden 90:119127.Google Scholar
DUKE, J. 2012. Handbook of legumes of world economic importance. Springer Science & Business Media, New York. 346 pp.Google Scholar
EL-SIDDIG, K., GUNASENA, H. P. M., PRASAD, B. A., PUSHPAKUMARA, D. K. N. G., RAMANA, K. V. R., VIJAYANAND, P. & WILLIAMS, J. T. 2006. Tamarind, Tamarindus indica. Southampton Centre for Underutilised Crops, Southampton. 30 pp.Google Scholar
ERVIN, G., SMOTHERS, M., HOLLY, C., ANDERSON, C. & LINVILLE, J. 2006. Relative importance of wetland type versus anthropogenic activities in determining site invasibility. Biological Invasions 8:14251432.Google Scholar
FINE, P. V. A. 2002. The invasibility of tropical forests by exotic plants. Journal of Tropical Ecology 18:687705.Google Scholar
FISHER, R. 1925. Statistical methods for research workers. Oxford University Press, Oxford. 239 pp.Google Scholar
FLORY, S. L. & CLAY, K. 2009. Effects of roads and forest successional age on experimental plant invasions. Biological Conservation 142:25312537.Google Scholar
FOURNIER, D. A., SKAUG, H. J., ANCHETA, J., IANELLI, J., MAGNUSSON, A., MAUNDER, M. N., NIELSEN, A. & SIBERT, J. 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optimization Methods and Software 27:233249.Google Scholar
FREED, B. Z. 2012. Poster Abstract: Fallback food consumption and sympatry in Eulemur coronatus and Eulemur sanfordi. The 81st Annual Meeting of the American Association of Physical Anthropologists. Available online: http://meeting.physanth.org/program/2012/session23/freed-2012-fallback-food-consumption-and-sympatry-in-eulemur-coronatus-and-eulemur-sanfordi.html.Google Scholar
GÉRARD, A., GANZHORN, J. U., KULL, C. A. & CARRIÈRE, S. M. 2015. Possible roles of introduced plants for native vertebrate conservation: the case of Madagascar. Restoration Ecology 23:768775.Google Scholar
GIBSON, L., LEE, T. M., KOH, L. P., BROOK, B. W., GARDNER, T. A., BARLOW, J., PERES, C. A., BRADSHAW, C. J. A., LAURANCE, W. F., LOVEJOY, T. E. & NAVJOT, S. S. 2011. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478:378381.Google Scholar
GUREVITCH, J., FOX, G. A., WARDLE, G. M., INDERJIT, , & TAUB, D. 2011. Emergent insights from the synthesis of conceptual frameworks for biological invasions. Ecology Letters 14:407418.CrossRefGoogle ScholarPubMed
HANSEN, M. J. & CLEVENGER, A. P. 2005. The influence of disturbance and habitat on the presence of non-native plant species along transport corridors. Biological Conservation 125:249259.Google Scholar
HARPER, J. L. & WHITE, J. 1974. The demography of plants. Annual Review of Ecology and Systematics 5:419463.Google Scholar
KAISER‐BUNBURY, C. N., VALENTIN, T., MOUGAL, J., MATATIKEN, D. & GHAZOUL, J. 2011. The tolerance of island plant–pollinator networks to alien plants. Journal of Ecology 99:202213.Google Scholar
KLASSEN, W., CODALLO, M., ZASADA, I. A. & ABUL-BAKI, A. A. 2006. Characterization of velvetbean (Mucuna pruriens) lines for cover crop use. Proceedings of the Florida State Horticultural Society 119:258262.Google Scholar
KULL, C. A, TASSIN, J., MOREAU, S., RAKOTO, R. H., BLANC-PAMARD, C. & CARRIÈRE, S. M. 2012. The introduced flora of Madagascar. Biological Invasions 14:875888.CrossRefGoogle Scholar
KULL, C., TASSIN, J. & CARRIERE, S. 2014. Approaching invasive species in Madagascar. Madagascar Conservation and Development 9:6070.Google Scholar
LAMPARIELLO, L. R., CORTELAZZO, A., GUERRANTI, R., STICOZZI, C. & VALACCHI, G. 2012. The magic velvet bean of Mucuna pruriens . Journal of Traditional and Complementary Medicine 2:331339.Google Scholar
LIM, T. K. 2012. Mucuna pruriens . Pp. 779 in Lim, T. K. (ed.). Edible medicinal and non-medicinal plants – fruits. Springer, Dordrecht.Google Scholar
MOLES, A. T., GRUBER, M. A. M. & BONSER, S. P. 2008. A new framework for predicting invasive plant species. Journal of Ecology 96:1317.Google Scholar
MORRIS, R. J. 2010. Anthropogenic impacts on tropical forest biodiversity: a network structure and ecosystem functioning perspective. Philosophical Transactions of the Royal Society B – Biological Sciences 365:37093718.Google Scholar
MYERS, N., MITTERMEIER, R. A., MITTERMEIER, C. G., DA FONSECA, G. A. B. & KENT, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853858.Google Scholar
PARROTTA, J. A. 1988. Early growth and yield of Albizia lebbeck at a coastal site in Puerto Rico. Nitrogen Fixing Tree Research Reports 6:4749.Google Scholar
PAUCHARD, A. & SHEA, K. 2006. Integrating the study of non-native plant invasions across spatial scales. Biological Invasions 8:399413.Google Scholar
POLLNAC, F., SEIPEL, T., REPATH, C. & REW, L. J. 2012. Plant invasion at landscape and local scales along roadways in the mountainous region of the Greater Yellowstone Ecosystem. Biological Invasions 14:17531763.Google Scholar
PRASAD, A. E. 2012. Landscape-scale relationships between the exotic invasive shrub Lantana camara and native plants in a tropical deciduous forest in southern India. Journal of Tropical Ecology 28:5564.Google Scholar
RAMASWAMI, G. & SUKUMAR, R. 2014. Lantana camara L. (Verbenaceae) invasion along streams in a heterogeneous landscape. Journal of Biosciences 39:717726.Google Scholar
REUTER, K. E. 2015. Natural resource use in Madagascar. Doctoral dissertation, Department of Biology, Temple University.Google Scholar
SEIPEL, T., KUEFER, C., REW, L. J., DAEHLER, C. C., PAUCHARD, A., NAYLOR, B. J., ALEXANDER, J. M., EDWARDS, P. J., PARKS, C. G., AREVALO, J. R., CAVIERES, L. A., DIETZ, H., JAKOBS, G., MCDOUGALL, K., OTTO, R. & WALSH, N. 2012. Processes at multiple scales affect richness and similarity of non-native plant species in mountains around the world. Global Ecology and Biogeography 21:236246.Google Scholar
SPELLERBERG, I. F. 1998. Ecological effects of roads and traffic: a literature review. Global Ecology and Biogeography 7:317333.Google Scholar
THEOHARIDES, K. A. & DUKES, J. S. 2007. Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytologist 176:256273.Google Scholar
THUILLER, W., RICHARDSON, D. M., ROUGET, M., PROCHES, S. & WILSON, J. R. U. 2006. Interactions between environment, species traits, and human uses describe patterns of plant invasions. Ecology 87:17551769.Google Scholar
VARDIEN, W., RICHARDSON, D. M., FOXCROFT, L. C., THOMPSON, G. D., WILSON, J. R. U. & LE ROUX, J. J. 2012. Invasion dynamics of Lantana camara L. (sensu lato) in South Africa. South African Journal of Botany 81:8194.CrossRefGoogle Scholar
WALSH, J. C., VENTER, O., WATSON, J. E. M., FULLER, R. A., BLACKBURN, T. M. & POSSINGHAM, H. P. 2012. Exotic species richness and native species endemism increase the impact of exotic species on islands. Global Ecology and Biogeography 21:841850.CrossRefGoogle Scholar
WILSON, G., DESAI, A. A., SIM, D. A., GRUBER, M. A. M. & LESTER, P. J. 2014. The association between invasive Lantana camara and seedlings/saplings of a plant community in Mudumalai Tiger Reserve, India. Journal of Tropical Ecology 30:551563.CrossRefGoogle Scholar
ZUUR, A., IENO, E. N., WALKER, N., SAVELIEV, A. A. & SMITH, G.M. 2009. Mixed effects models and extensions in ecology with R. Springer, New York. 579 pp.Google Scholar