Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T19:55:10.399Z Has data issue: false hasContentIssue false

Influence of reaction parameters on the photoluminescence properties of free standing functionalized silicon nanocrystals

Published online by Cambridge University Press:  01 February 2011

Anoop Gupta
Affiliation:
anoop.gupta@uni-due.de, University of Duisburg-Essen, Institute for Combustion and Gasdynamics, Duisburg, Germany
Hartmut Wiggers
Affiliation:
hartmut.wiggers@uni-due.de, University of Duisburg-Essen, Institute for Combustion and Gasdynamics, Duisburg, NRW, Germany
Get access

Abstract

While silicon nanostructures acquire novel optical properties due to miniaturization, the stability of light emission is severely limited because of exciton trapping due to surface oxidation coming along with the formation of defects. Grafting of organic molecules on a hydrogen-terminated silicon surface via hydrosilylation provides a promising route to stabilize their surface against oxidation. In this communication, we report on the effect of surface passivation on the optical properties of freestanding silicon nanocrystals (Si-NCs). The surface functionalization of hydrogen-terminated Si-NCs with organic molecules was achieved via liquid phase hydrosilylation. We demonstrate that surface functionalization does not preserve the original emission of hydrogen-terminated Si-NCs. It is observed that the emission spectrum of green emitting hydrogen-terminated Si-NCs is red shifted after surface functionalization. We find that the direction of shift does not depend on the type of organic ligands and the reaction conditions, however, the amount of shift can be altered. The factors influencing the shift in the emission spectra of functionalized Si-NCs with respect to hydrogen-terminated samples are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Canham, L. T., Phys. status solidi B 1995, 190, 8490.Google Scholar
[2] Cullis, A. G., Canhan, L. T., Nature 1991, 353, 335.Google Scholar
[3] Li, X., He, Y., Talukdar, S. S., Swihart, M. T., Langmuir 2003, 19, 8490.Google Scholar
[4] Gupta, A., Swihart, M. T., Wiggers, H., Adv. Funct. Mater. 2009, 19, 696.Google Scholar
[5] Nelles, J., Sendor, D., Ebbers, A., Petrat, F., Wiggers, H., Schulz, C., Simon, U., Colloid Polym. Sci. 2007, 285, 729.Google Scholar
[6] Buriak, J. M., Allen, M. J., J. Lumin. 1998, 80, 29.Google Scholar
[7] Reboredo, F. A., Galli, G., J. Phys. Chem. B 2005, 109, 1072.Google Scholar
[8] Rogozhina, E., Belomoin, G., Smith, A., Abuhassan, L., Barry, N., Akcakir, O., Braun, P. V., Nayfeh, M. H., Appl. Phys. Lett. 2001, 78, 3711.Google Scholar
[9] Giesen, B., Wiggers, H., Kowalik, A., Roth, P., J. Nanopart. Res. 2005, 7, 29.Google Scholar
[10] Gupta, A., Wiggers, H., Physica E 2009, 41, 1010.Google Scholar
[11] Gupta, A., Erogbogbo, F., Swihart, M. T., Wiggers, H., Mat. Res. Soc. Symp. Proc. 2009, 1145–MM10.Google Scholar
[12] Marra, D. C., Edelberg, E. A., Naone, R. L., Aydil, E. S., J. Vac. Sci. Technol. A 1998, 16, 3199.Google Scholar
[13] Niwano, M., Kageyama, J.-I., Kurita, K., Kinashi, K., Takahashi, I., Miyamoto, N., J. Appl. Phys. 1994, 76, 2157.Google Scholar
[14] Godefroo, S., Hayne, M., Jivanescu, M., Stesmans, A., Zacharias, M., Lebedev, O. I., Tendeloo, G. Van, Moshchalkov, V. V., Nat. Nano 2008, 3, 174.Google Scholar