Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T07:52:08.024Z Has data issue: false hasContentIssue false

Gas-Source Molecular Beam Epitaxy Growth and Characterization of GaNP/GaP Structures

Published online by Cambridge University Press:  10 February 2011

H. P. Xin
Affiliation:
Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093-0407
C. W. Tu
Affiliation:
Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093-0407
Get access

Abstract

GaNP bulk layers with different N concentrations and GaN0.025P0.975/GaP multiple quantum wells (MQWs) with various well thicknesses were grown on (100) GaP substrates by gas-source molecular beam epitaxy with a RF nitrogen radical beam source. Using high-resolution X-ray rocking curves, photoluminescence (PL) and absorption measurements, we have shown that incorporation of N in GaNxP1−x, alloys (x ≥0.43%) leads to a direct bandgap behavior of GaNP, and yields strong room-temperature PL from the epilayers. A large Stokes shift of 200 meV is found between the PL peak energy and the absorption edge for the GaNP epilayers, indicating a very strong carrier localization. From the PL peaks of a series of GaN0.025P0.975/GaP MQWs with different well thicknesses grown at the same growth condition, a large conduction-band effective mass mc* − 0.9 me has been obtained for the GaN0.025P0.975alloy, indicating a mixing of Γ and X band wave functions in the conduction band

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Thomas, D. G., Hopfield, J. J., and Frosch, C. J., Phys. Rev. Lett. 15, 857 (1965).Google Scholar
[2] Thomas, D. G. and Hopfield, J. J., Phys. Rev. 150, 680 (1966).Google Scholar
[3] Falkner, R. A. and Dean, P. J., J. Lumin. 12, 552 (1970).Google Scholar
[4] Logan, R. A., White, H. G., and Wiegman, W., Appl. Phys. Lett. 13, 139 (1968).Google Scholar
[5] Groves, W. O., Herzog, A. H., and Craford, M. G., Appl. Phys. Lett. 19, 184 (1971).Google Scholar
[6] Baillargen, J. N., Chen, K. Y., Holfl, G. E., Pearah, P. J., and Hsieh, K. C., Appl. Phys. Lett. 60, 2540 (1992).Google Scholar
[7] Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth, 27, 118 (1974).Google Scholar
[8] Bellaiche, L., Wei, S. H., and Zunger, A., Phys. Rev. B 56, 10233 (1997).Google Scholar
[9] Yaguchi, H., Miyoshi, S., Biwa, G., Kibune, M., Onabe, K., Shiraki, Y. and Ito, R., J. Cryst. Growth 170, 353 (1997).Google Scholar
[10] Bi, W. G. and Tu, C. W., Appl. Phys. Lett. 69, 3710 (1996).Google Scholar
[11] Buyanova, I. A., Chen, W. M., Pozina, G., Bergman, J. P., Monemar, B., Xin, H. P., and Tu, C. W., Appl. Phys. Lett. 75, 501 (1999)Google Scholar
[12] Martin, R. W., Middleton, P. G., and Odonnell, K. P., Appl. Phys. Lett. 74, 263 (1999)Google Scholar
[13] Damilano, B., Vezian, S., Grandjean, N., and Massies, J., J. J. Appl. Phys. 38, L1357 (1999)Google Scholar
[14] Shan, W., Walukiewicz, W., Yu, K. M., Wu, J. Q., Ager, J. W. III, Haller, E. E., Xin, H. P. and Tu, C. W., submitted to Appl. Phys. Lett. (2000)Google Scholar
[15] Shan, W., Walukiewicz, W., Ager, J. W. III, Haller, E. E., Geisz, J. F., Friedman, D. J., Olson, J. M., and Kurtz, S. R., Phys. Rev. Lett. 82, 1221 (1999); J. Appl. Phys. 86, 2349 (1999).Google Scholar
[16] Jones, E. D., Modline, N. A., Allerman, A. A., Fritz, I. J., Kurtz, S. R., Wright, A. F., Tozer, S. T., and Wei, X., Proceedings of the SPIE, 3621, 52 (1999).Google Scholar
[17] Kopylov, A. A., Sov. Phys. Semicond. 16, 1380 (1982).Google Scholar
[18] Kopylov, A. A., Solid State Communications 56, 1 (1985).Google Scholar