Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-02T23:06:42.267Z Has data issue: false hasContentIssue false

Growth and biomass allocation in seedlings of rain-forest trees in New Caledonia: monodominants vs. subordinates and episodic vs. continuous regenerators

Published online by Cambridge University Press:  19 January 2017

Jennifer Read*
Affiliation:
School of Biological Sciences, Monash University, Victoria 3800, Australia
Stephane McCoy
Affiliation:
Environmental Conservation Service, Vale New Caledonia, BP 218, Noumea 98845, New Caledonia
Tanguy Jaffré
Affiliation:
Institut de Recherche pour le Développement (IRD) – UMR AMAP, Herbarium NOU, BP A5, Noumea 98800, New Caledonia
Gordon Sanson
Affiliation:
School of Biological Sciences, Monash University, Victoria 3800, Australia
Murray Logan
Affiliation:
Australian Institute of Marine Science, PMB No 3, Townsville MC, Qld 4810, Australia
*
*Corresponding author. Email: jenny.read@monash.edu

Abstract:

Some species-rich secondary forests in New Caledonia have a monodominant canopy. Here we investigate growth and biomass allocation traits that might explain single-species’ dominance of these post-disturbance stands, and their later decline in the absence of large-scale disturbance. Seedlings of 20 rain-forest trees were grown in two light treatments in a nursery house. In the sun treatment, monodominants grew faster (56.7 ± 1.4 mg g−1 wk−1) than subordinates (40.2 ± 2.6 mg g−1 wk−1). However, some episodically regenerating (ER) subordinates had high growth rates similar to those of monodominants. In the shade treatment, monodominants and subordinates had similar growth rates (33.7 ± 2.6 and 34.0 ± 1.9 mg g−1 wk−1 respectively). Notably, monodominants in both sun and shade treatments had lower root mass fraction (0.29 ± 0.02 and 0.27 ± 0.02 g g−1 respectively) than subordinates (0.39 ± 0.02 and 0.37 ± 0.02 g g−1). Fast growth in sunny conditions is probably imperative for these relatively shade-intolerant ER monodominants. In field conditions, high shoot mass fraction combined with efficient root performance may facilitate faster growth in monodominants competing with other ER species in sunlit sites. Slower growth in shade may contribute to loss of dominance over time in undisturbed forests.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AGYEMAN, K., SWAINE, M. D. & THOMPSON, J. 1999. Responses of tropical forest tree seedlings to irradiance and the derivation of a light response index. Journal of Ecology 87:815827.Google Scholar
AUGSPURGER, C. K. 1984. Seedling survival of tropical tree species: interactions of dispersal distance, light-gaps, and pathogens. Ecology 65:17051712.Google Scholar
BAILEY, R. L. & DELL, T. R. 1973. Quantifying diameter distributions with the Weibull function. Forest Science 19:97104.Google Scholar
BALTZER, J. L. & THOMAS, S. C. 2007. Determinants of whole-plant light requirements in Bornean rain forest tree saplings. Journal of Ecology 95:12081221.Google Scholar
BÉREAU, M., BONAL, D., LOUISANNA, E. & GARBAYE, J. 2005. Do mycorrhizas improve tropical tree seedling performance under water stress and low light conditions? A case study with Dicorynia guianensis (Caesalpiniaceae). Journal of Tropical Ecology 21:375381.Google Scholar
BLOOR, J. M. G. 2003. Light responses of shade-tolerant tropical tree species in north-east Queensland: a comparison of forest- and shadehouse-grown seedlings. Journal of Tropical Ecology 19:163170.Google Scholar
BLOOR, J. M. G. & GRUBB, P. J. 2003. Growth and mortality in high and low light: trends among 15 shade-tolerant tropical rain forest tree species. Journal of Ecology 91:7785.Google Scholar
CANHAM, C. D., KOBE, R. K., LATTY, E. F. & CHAZDON, R. L. 1999. Interspecific and intraspecific variation in tree seedling survival: effects of allocation to roots versus carbohydrate reserves. Oecologia 121:111.Google Scholar
COMAS, L. H., BOUMA, T. J. & EISSENSTAT, D. M. 2002. Linking root traits to potential growth rate in six temperate tree species. Oecologia 132:3443.Google Scholar
CONNELL, J. H. & LOWMAN, M. D. 1989. Low-diversity tropical rain forests: some possible mechanisms for their existence. American Naturalist 134:88119.Google Scholar
CORRALES, A., MANGAN, S. A., TURNER, B. L. & DALLING, J. W. 2016. An ectomycorrhizal nitrogen economy facilitates monodominance in a neotropical forest. Ecology Letters 19:383392.Google Scholar
DEMENOIS, J., IBANEZ, T., READ, J. & CARRICONDE, F. (in press). Comparison of two monodominant species in New Caledonia: floristic diversity and ecological strategies of Arillastrum gummiferum (Myrtaceae) and Nothofagus aequilateralis (Nothofagaceae) rainforests. Australian Journal of Botany. http://dx.doi.org/10.1071/BT16125 Google Scholar
EISSENSTAT, D. M. 1991. On the relationship between specific root length and the rate of root proliferation: a field study using citrus rootstocks. New Phytologist 118:6368.Google Scholar
FINLAY, R. D. & READ, D. J. 1986a. The structure and function of the vegetative mycelium of ectomycorrhizal plants. I. Translocation of 14C-labelled carbon between plants interconnected by a common mycelium. New Phytologist 103:143156.Google Scholar
FINLAY, R. D. & READ, D. J. 1986b. The structure and function of the vegetative mycelium of ectomycorrhizal plants. II. The uptake and distribution of phosphorus by mycelial strands interconnecting host plants. New Phytologist 103:157165.Google Scholar
GIVNISH, T. J. 1988. Adaptation to sun and shade: a whole-plant perspective. Australian Journal of Plant Physiology 15:6392.Google Scholar
GREEN, P. T., HARMS, K. E. & CONNELL, J. H. 2014. Nonrandom, diversifying processes are disproportionately strong in the smallest size classes of a tropical forest. Proceedings of the National Academy of Sciences USA 111:1864918654.Google Scholar
GRIGNON, C., RIGAULT, F., DAGOSTINI, G & MUNZINGER, J. 2010. Recensement du patrimoine botanique des aires protégées de la Province Sud (Rapport d’étape). IRD-Province Sud de la Nouvelle-Calédonie. 81 pp.Google Scholar
GRUBB, P. J. & METCALFE, D. J. 1996. Adaptation and inertia in the Australian tropical lowland rain-forest flora: contradictory trends in intergeneric and intrageneric comparisons of seed size in relation to light demand. Functional Ecology 10:512520.Google Scholar
HART, T. B. 1990. Monospecific dominance in tropical rain forests. Trends in Ecology and Evolution 5:611.Google Scholar
HART, T. B. 1995. Seed, seedling and sub-canopy survival in monodominant and mixed forests of the Ituri Forest, Africa. Journal of Tropical Ecology 11:443459.Google Scholar
HEENAN, P. B. & SMISSEN, R. D. 2013. Revised circumscription of Nothofagus and recognition of the segregate genera Fuscospora, Lophozonia, and Trisyngyne (Nothofagaceae). Phytotaxa 146:131.Google Scholar
HENKEL, T. W., MAYOR, J. R. & WOOLLEY, L. P. 2005. Mast fruiting and seedling survival of the ectomycorrhizal, monodominant Dicymbe corymbosa (Caesalpiniaceae) in Guyana. New Phytologist 167:543556.Google Scholar
HOTHORN, T., BRETZ, F. & WESTFALL, P. 2008. Simultaneous inference in general parametric models. Biometrical Journal 50:346363.Google Scholar
HUNT, R., CAUSTON, D. R., SHIPLEY, B. & ASKEW, A. P. 2002. A modern tool for classical plant growth analysis. Annals of Botany 90:485488.Google Scholar
IBANEZ, T. & BIRNBAUM, P. 2014. Monodominance at the rainforest edge: case study of Codia mackeeana (Cunoniaceae) in New Caledonia. Australian Journal of Botany 62:312321.Google Scholar
ISNARD, S., L'HUILLIER, L., RIGAULT, F. & JAFFRÉ, T. 2016. How did the ultramafic soils shape the flora of the New Caledonian hotspot? Plant and Soil 403:5376.Google Scholar
JAFFRÉ, T. 1980. Étude écologique du peuplement végétal des sols dérivés de roches ultrabasiques en Nouvelle Calédonie. Collection Travaux et Documents de l'ORSTOM no. 124. ORSTOM, Paris. 273 pp.Google Scholar
JAFFRÉ, T. & VEILLON, J.-M. 1990. Etude floristique et structurale de deux forêts denses humides sur roches ultrabasiques en Nouvelle-Calédonie. Adansonia 3–4:243273.Google Scholar
KITAJIMA, K. 1994. Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia 98:419428.Google Scholar
KITAJIMA, K., CORDERO, R. A. & WRIGHT, S. J. 2013. Leaf life span spectrum of tropical woody seedlings: effects of light and ontogeny and consequences for survival. Annals of Botany 112:685699.Google Scholar
KOBE, R. K. 1997. Carbohydrate allocation to storage as a basis of interspecific variation in sapling survivorship and growth. Oikos 80:226233.Google Scholar
KRAMER-WALTER, K. R., BELLINGHAM, P. J., MILLAR, T. R., SMISSEN, R. D., RICHARDSON, S. J. & LAUGHLIN, D. C. 2016. Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. Journal of Ecology 104:12991310.Google Scholar
LAMONT, B. B. 2003. Structure, ecology and physiology of root clusters – a review. Plant and Soil 248:119.Google Scholar
LARSON, J. E. & FUNK, J. L. 2016. Seedling root responses to soil moisture and the identification of a belowground trait spectrum across three growth forms. New Phytologist 210:827838.Google Scholar
LUSK, C. H., FALSTER, D. S., JARA-VERGARA, C. K., JIMENEZ-CASTILLO, M. & SALDAÑA-MENDOZA, A. 2008. Ontogenetic variation in light requirements of juvenile rainforest evergreens. Functional Ecology 22:454459.Google Scholar
LUSK, C. H., PÉREZ-MILLAQUEO, M. M., PIPER, F. I. & SALDAÑA, A. 2011. Ontogeny, understorey light interception and simulated carbon gain of juvenile rainforest evergreens differing in shade tolerance. Annals of Botany 108:419428.Google Scholar
MANAUTÉ, J., JAFFRÉ, T., VEILLON, J. M. & KRANITZ, M. L. 2009. Review of the Araucariaceae in New Caledonia. Pp. 347358 in Bieleski, R. L. & Wilcox, M. D. (eds). Proceedings of the 2002 Araucariaceae Symposium, Araucaria-Agathis-Wollemia. International Dendrology Society, Auckland.Google Scholar
MCCARTHY-NEUMANN, S. & KOBE, R. K. 2008. Tolerance of soil pathogens co-varies with shade tolerance across species of tropical tree seedlings. Ecology 89:18831892.Google Scholar
MCCOY, S., JAFFRÉ, T., RIGAULT, F. & ASH, J. E. 1999. Fire and succession in the ultramafic maquis of New Caledonia. Journal of Biogeography 26:579594.Google Scholar
MCGUIRE, K. L. 2007a. Recruitment dynamics and ectomycorrhizal colonization of Dicymbe corymbosa, a monodominant tree in the Guiana Shield. Journal of Tropical Ecology 23:297307.Google Scholar
MCGUIRE, K. L. 2007b. Common ectomycorrhizal networks may maintain monodominance in a tropical rain forest. Ecology 88:567574.Google Scholar
MORAT, P. 1993. Our knowledge of the flora of New Caledonia: endemism and diversity in relation to vegetation types and substrates. Biodiversity Letters 1:7281.Google Scholar
MORRISON, T. M. & ENGLISH, D. A. 1967. The significance of mycorrhizal nodules of Agathis australis . New Phytologist 66:245250.Google Scholar
MYERS, J. A. & KITAJIMA, K. 2007. Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest. Journal of Ecology 95:383395.Google Scholar
NASCIMENTO, M. T., BARBOSA, R. I., VILLELA, D. M. & PROCTOR, J. 2007. Above-ground biomass changes over an 11-year period in an Amazon monodominant forest and two other lowland forests. Plant Ecology 192:181191.Google Scholar
NEWBERY, D. M., CHUYONG, G. B., ZIMMERMANN, L. & PRAZ, C. 2006. Seedling survival and growth of three ectomycorrhizal Caesalpiniaceous tree species in a Central African rain forest. Journal of Tropical Ecology 22:499511.Google Scholar
NEWBERY, D. M., PRAZ, C. J., VAN DER BURGT, X. M., NORGHAUER, J. M. & CHUYONG, G. B. 2010. Recruitment dynamics of the grove-dominant tree Microberlinia bisulcata in African rain forest: extending the light response versus adult longevity trade-off concept. Plant Ecology 206:151177.Google Scholar
NEWBERY, D. M., VAN DER BURGT, X. M., WORBES, M. & CHUYONG, G. B. 2013. Transient dominance in a central African rain forest. Ecological Monographs 83:339382.Google Scholar
NIINEMETS, U. 2006. The controversy over traits conferring shade-tolerance in trees: ontogenetic changes revisited. Journal of Ecology 94:464470.Google Scholar
OSUNKOYA, O. O., ASH, J. E., HOPKINS, M. S. & GRAHAM, A. W. 1994. Influence of seed size and seedling ecological attributes on shade-tolerance of rain-forest tree species in Northern Queensland. Journal of Ecology 82:149163.Google Scholar
PEH, K. S.-H., LEWIS, S. L. & LLOYD, J. 2011. Mechanisms of monodominance in diverse tropical tree-dominated systems. Journal of Ecology 99:891898.Google Scholar
PERRIER, N., AMIR, H. & COLIN, F. 2006. Occurrence of mycorrhizal symbioses in the metal-rich lateritic soils of the Koniambo Massif, New Caledonia. Mycorrhiza 16:449458.Google Scholar
PINHEIRO, J. C. & BATES, D. M. 2000. Mixed-effects models in S and S-PLUS. Springer-Verlag, New York. 528 pp.Google Scholar
POORTER, L. 1999. Growth responses of 15 rain-forest tree species to a light gradient: the relative importance of morphological and physiological traits. Functional Ecology 13:396410.Google Scholar
PORTSMUTH, A. & NIINEMETS, Ü. 2007. Structural and physiological plasticity in response to light and nutrients in five temperate deciduous woody species of contrasting shade tolerance. Functional Ecology 21:6177.Google Scholar
READ, J. & JAFFRÉ, T. 2013. Populations dynamics of canopy trees in New Caledonian rain forests: are monodominant Nothofagus (Nothofagaceae) forests successional to mixed rain forests? Journal of Tropical Ecology 29:485499.Google Scholar
READ, J., JAFFRÉ, T., GODRIE, E., HOPE, G. S. & VEILLON, J.-M. 2000. Structural and floristic characteristics of some monodominant and adjacent mixed rainforests in New Caledonia. Journal of Biogeography 27:233250.Google Scholar
READ, J., JAFFRÉ, T., FERRIS, J. M., MCCOY, S. & HOPE, G. S. 2006. Does soil determine the boundaries of monodominant rain forest with adjacent mixed rain forest and maquis on ultramafic soils in New Caledonia? Journal of Biogeography 33:10551065.Google Scholar
READ, J., SANSON, G. D., BURD, M. & JAFFRÉ, T. 2008. Mass flowering and parental death in the regeneration of Cerberiopsis candelabra (Apocynaceae), a long-lived monocarpic tree in New Caledonia. American Journal of Botany 95:558567.Google Scholar
READ, J., FLETCHER, T. D., WEVILL, T. & DELETIC, A. 2010. Plant traits that enhance pollutant removal from stormwater in biofiltration systems. International Journal of Phytoremediation 12:3453.Google Scholar
READ, J., MCCOY, S. & JAFFRÉ, T. 2015. Shade-tolerance of seedlings of rain-forest trees: monodominants vs. subordinates and episodic vs. continuous regenerators. Journal of Tropical Ecology 31:541552.Google Scholar
ROUMET, C., URCELAY, C. & DÍAZ, S. 2006. Suites of root traits differ between annual and perennial species growing in the field. New Phytologist 170:357368.Google Scholar
SACK, L. & GRUBB, P. J. 2001. Why do species of woody seedlings change rank in relative growth rate between low and high irradiance? Functional Ecology 15:145154.Google Scholar
SACK, L. & GRUBB, P. J. 2003. Crossovers in seedling relative growth rates between low and high irradiance: analyses and ecological potential. Functional Ecology 17:281287.Google Scholar
STEIDINGER, B. S., TURNER, B. L., CORRALES, A. & DALLING, J. W. 2015. Variability in potential to exploit different soil organic phosphorus compounds among tropical montane tree species. Functional Ecology 29:121130.Google Scholar
TORTI, S. D., COLEY, P. D. & KURSAR, T. A. 2001. Causes and consequences of monodominance in tropical lowland forests. American Naturalist 157:141153.Google Scholar
VALLADARES, F. & NIINEMETS, Ü. 2008. Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology, Evolution, and Systematics 39:237257.Google Scholar
VALVERDE-BARRANTES, O. J., SMEMO, K. A., FEINSTEIN, L. M., KERSHNER, M. W. & BLACKWOOD, C. B. 2013. The distribution of below-ground traits is explained by intrinsic species differences and intraspecific plasticity in response to root neighbours. Journal of Ecology 101:933942.Google Scholar
VENEKLAAS, E. J. & POORTER, L. 1998. Growth and carbon partitioning of tropical tree seedlings in contrasting light environments. Pp. 337361 in Lambers, H., Poorter, H. & van Vuren, M. M. I. (eds). Physiological mechanisms and ecological consequences. Bakhuys Publishers, Leiden.Google Scholar
WALTERS, M. B. & REICH, P. B. 1999. Low-light carbon balance and shade tolerance in the seedlings of woody plants: do winter deciduous and broad-leaved evergreen species differ? New Phytologist 143:143154.Google Scholar
WALTERS, M. B. & REICH, P. B. 2000. Seed size, nitrogen supply, and growth rate affect tree seedling survival in deep shade. Ecology 81:18871901.Google Scholar
WATLING, J. R., BALL, M. C. & WOODROW, I. E. 1997. The utilization of lightflecks for growth in four Australian rain-forest species. Functional Ecology 11:231239.Google Scholar
WEINER, J. 2004. Allocation, plasticity and allometry in plants. Perspectives in Plant Ecology, Evolution and Systematics 6:207215.Google Scholar
ZANGARO, W., ALVES, R. A., LESCANO, L. E. & ANSANELO, A. P. 2012. Investment in fine roots and arbuscular mycorrhizal fungi decrease during succession in three Brazilian ecosystems. Biotropica 44:141150.Google Scholar
ZANGARO, W., LESCANO, L. E. A. M., MATSUURA, E. M., RONDINA, A. B. L. & NOGUEIRA, M. A. 2016. Differences between root traits of early- and late-successional trees influence below-ground competition and seedling establishment. Journal of Tropical Ecology 32:300313.Google Scholar