Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T18:54:55.217Z Has data issue: false hasContentIssue false

Polymer Composites for Radiation Detection: Diiodobenzene and light emitting polymer molecular solutions for gamma detection

Published online by Cambridge University Press:  01 February 2011

Qibing Pei
Affiliation:
qpei@seas.ucla.edu, University of California, Los Angeles, Department of Materials Science and Engineering, Engineering V Bldg, Room 3121H, 420 Westwood Plaza, Los Angeles, CA, 90095-1595, United States
Yongsheng Zhao
Affiliation:
yszhao@seas.ucla.edu, University of California, Los Angeles, Department of Materials Science and Engineering, 420 Westwood Plaza, Los Angeles, CA, 90095-1595, United States
Haizheng Zhong
Affiliation:
hzzhong@ucla.edu, University of California, Los Angeles, Department of Materials Science and Engineering, 420 Westwood Plaza, Los Angeles, CA, 90095-1595, United States
Get access

Abstract

Conjugated polymers are largely intact by gamma exposure but can be energized in the presence of high-Z compounds. The resulting alteration of the polymer's high optical density and photoluminescence efficiency can be exploited for the detection of gamma radiation with high sensitivity. Diiodobenzene and conjugated polymers mix on the molecular level in solid thin films. Composite films of various thicknesses were conveniently cast from solution and exposed to gamma radiation. The responses of the films to gamma dosage were observed with dramatic changes in ultraviolet-visible absorption and photoluminescence.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Knoll, G. F., Radiation Detection and Measurement, 3rd Edition, J. Wiley and Sons, New York, 2000.Google Scholar
[2] Owens, A., J. Synchrotron Rad. 2006, 13, 143.10.1107/S0909049505033339Google Scholar
[3] Owens, A., Kozorezov, A.G., Nuclear Instruments and Methods in Physics Research A 2006, 563, 31.10.1016/j.nima.2006.01.101Google Scholar
[4] Yoshino, K., Hayashi, S., and Inuishi, Y., Jpn. J. Appl. Phys., Part 1 1982, 21, L569 10.1143/JJAP.21.L569Google Scholar
[5] Kudoh, H., Sasuga, T., Seguchi, T., and Katsumura, Y., Polymer 1996, 37, 2903.10.1016/0032-3861(96)89385-2Google Scholar
[6] Lee, K. W., Mo, K. H., Jang, J. W. and Lee, C. E., Journal of the Korean Physical Society, 2005, 47, 130.Google Scholar
[7] Beckerle, P., Ströbele, H., Nuclear Instruments and Methods in Physics Research A 2000, 449, 302.Google Scholar
[8] Graham, S.C., Friend, R.H., Fung, S., and Moratti, S.C., Synthetic Metals 1997, 84, 903.Google Scholar
[9] Atreya, M., Li, S., Kang, E. T., Neoh, K. G., Ma, Z. H., Tan, K. L., Huang, W., Polymer Degradation and Stability 1999 65 287.Google Scholar
[10] Silva, E. A. B., Borin, J. F., Nicolucci, P., Graeff, C. F. O., Netto, T. G., Bianchi, R. F., Appl. Phys. Lett. 2005, 86, 131902.Google Scholar
[11] Campbell, I. H., Crone, B. K., Adv. Mater. 2006, 18, 77.10.1002/adma.200501434Google Scholar
[12] Chen, L., McBranch, D. W., Wang, H. L., Helgeson, R., Wudl, F., Whitten, D. G., Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 12287.10.1073/pnas.96.22.12287Google Scholar
[13] McQuade, D. T., Pullen, A. E., Swager, T. M., Chem. Rev. 2000, 100, 2537.Google Scholar
[14] Meer, B.W. Van der, Coker, G., Chen, S.-Y., Resonance Energy Transfer: Theory and Data, VCH Publishers, Inc., NewYork, 1994.Google Scholar
[15] Scott, J. C., Kaufman, J. K., Brock, P. J., Di, P. R., Salem, J., Goiltia, J. A.. J. Appl. Phys. 1996, 79, 2745.Google Scholar