Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T00:58:29.151Z Has data issue: false hasContentIssue false

A Scanning Tunneling Microscopy Study of Mbe-Grown GAAS(001)-Faceted Surfaces

Published online by Cambridge University Press:  28 February 2011

R. Maboudian
Affiliation:
Chemical Engineering Department and QUEST, University of California, Santa Barbara, CA 93106, USA
V. Bressler-Hill
Affiliation:
Chemical Engineering Department and QUEST, University of California, Santa Barbara, CA 93106, USA
X.-S. Wang
Affiliation:
Chemical Engineering Department and QUEST, University of California, Santa Barbara, CA 93106, USA
K. Pond
Affiliation:
Materials Department and QUEST, University of California, Santa Barbara, CA 93106, USA
P. M. Petroff
Affiliation:
Materials Department and QUEST, University of California, Santa Barbara, CA 93106, USA
W. H. Weinberg
Affiliation:
Materials Department and QUEST, University of California, Santa Barbara, CA 93106, USA
Get access

Abstract

Scanning tunneling microscopy (STM) and reflection high-energy diffraction (RHEED) have been employed to investigate the morphology of faceted GaAs(001) surfaces grown by molecular beam epitaxy (MBE). The RHEED pattern monitored during the growth indicates that the faceting corresponds to (711)A planes. The STM images obtained on these surfaces reveal predominantly a (2×4) local ordering, although unusual (2×3) and (2×6) structures have also been observed. The atom-resolved imaging of the (2×4) structure indicates that the unit cell consists of two As dimers and two missing dimers, identical to the structure obtained on the flat As-rich GaAs(001)-(2×4) surface. Furthermore, islands on the surface are found to be anisotropie, with a shape anisotropy of about 4:1 for step A to step B. The anisotropy is explained in terms of the difference in step edge reactivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Tsuchiya, M., Gaines, J. M., Yan, R. H., Simes, R. J., Holtz, P. O., Coldren, L.A., and Petroff, P.M., Phys. Rev. Lett. 62, 466 (1989).Google Scholar
[2] Tanaka, M., Motohisa, J., and Sakaki, H., Surf. Sci. 228, 408 (1990).Google Scholar
[3] Notzel, R., Ledenstov, N.N., Daweritz, L., Hohenstein, M., and Ploog, K., Phys. Rev. Lett. 67, 3812 (1991);Google Scholar
Notzel, R., Daweritz, L., Ledentsov, N. N., and Ploog, K., Surf. Sci. 267, 209 (1992).Google Scholar
[4] Mirin, R., Krishnamurthy, M., Ibbetson, J., English, J., and Gossard, A., J. Cryst. Growth (submitted).Google Scholar
[5] Bensity, H., Bokenhoff, E., and Talneau, A., Appl. Phys. Lett. 60, 1987 (1992).Google Scholar
[6] Morishita, Y., Nomura, Y., Goto, S., Katayama, Y., Surf. Sci. 267, 17 (1992)Google Scholar
[7] Maboudian, R., Pond, K., Bressler-Hill, V., Wassermeier, M., Petroff, P. M., Briggs, G. A. D., and Weinberg, W. H., Surf. Sci. Lett. 275, 662 (1992).Google Scholar
[8] Wang, X.-S., Huang, C., Bressler-Hill, V., Maboudian, R., and Weinberg, W. H., J. Vac. Sci. Technol. A (submitted).Google Scholar
[9] Bressler-Hill, V., Maboudian, R., Wang, X.-S., Wassermeier, M., Pond, K., Petroff, P.M., and Weinberg, W. H., Surf. Sci. (in press).Google Scholar
[10] Shirashi, K., Appl. Phys. Lett. 60, 1365 (1992).Google Scholar
[11] Horikoshi, Y., Yamaguchi, H., Briores, F., and Kawashima, M., J. Cryst. Growth 105, 326 (1990).Google Scholar
[12] Bressler-Hill, V., Wassermeier, M., Pond, K., Maboudian, R., Petroff, P. M., Briggs, G. A. D., and Weinberg, W. H., J. Vac. Sci. Technol. B 10, 1881 (1992).Google Scholar
[13] Chadi, D. J., J. Vac. Sci. Technol. A 5, 843 (1987).Google Scholar