Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T16:35:02.161Z Has data issue: false hasContentIssue false

Microstructural Design by Controlled Crystallization of Metallic Glasses

Published online by Cambridge University Press:  01 February 2011

Uwe Köster
Affiliation:
Dept. Biochem. & Chem. Eng., University of Dortmund, D-44221 Dortmund, Germany
Rainer Janlewing
Affiliation:
Dept. Biochem. & Chem. Eng., University of Dortmund, D-44221 Dortmund, Germany
Get access

Abstract

Nanocrystalline materials can be produced e.g. by high energy ball milling or vacuum condensation; these methods require powder compaction as a final step. In another route - the nano-crystallization - metallic glasses are used as precursors for nanocrystalline materials without any porosity. The conditions for achieving an ultra-fine grained material by crystallization are small growth, but large nucleation rates. Whereas in Fe-Ni-B glasses the finest microstructure is produced at annealing temperatures above the glass transition close to the maximum of the nucleation rate, in Zr-based metallic glasses nanocrystallization was found to proceed only at relatively low temperatures below the glass transition. The aim of this contribution is to study systematically the micromechanisms involved in the microstructural design.

Crystallization was studied in detail in Fe-Ni-B and Zr-based metallic glasses by means of TEM, X-ray diffraction and DSC. Nucleation and growth rates were estimated from crystallization statistics. By modeling the obtained time-dependent nucleation rates in the framework of diffusion controlled classical nucleation all relevant crystallization parameter could be derived. Using these data TTT-diagrams could be drawn and annealing conditions deducted, e.g. for the formation of a nanocrystalline alloy.

Isothermal DSC plots for polymorphic crystallization can only be explained with a very significant decrease in the growth rate at later stages. Such a decrease is assumed to result from stresses building up during crystallization beyond the percolation limit for the crystalline phase; under this condition stresses resulting from the volume change during crystallization cannot be compensated by viscous flow as in the case of isolated crystals in an amorphous matrix.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Inoue, A., Acta Mater. 48 (2000), 279 Google Scholar
[2] Köster, U., Meinhardt, J., Roos, S., Rüdiger, A., Mat. Sci. Forum 225–227 (1996), 311 Google Scholar
[3] Köster, U., Meinhardt, J., Roos, S., Liebertz, H., Appl. Phys. Lett. 69 (1996), 179 Google Scholar
[4] Scott, M., Crystallization, in: Amorphous Metallic Alloys, ed. Luborsky, F.E., Butterworths, London 1983, p. 114ff.;Google Scholar
[5] Köster, U., Micromechanisms and Kinetics of Crystallization below the Glass Transition Temperature, in: Dynamic Aspects of Structural Change in liquids and Glasses, eds. Angell, C.A., Goldstein, M., Anals of the New York Academy of Sciences, Vol. 484, New York 1986, p. 39ff.;Google Scholar
[6] Köster, U., Schünemann, U., Phase Transformations in Rapidly Solidified Alloys, in: Rapidly Solidified Alloys, ed. Liebermann, H.H., Marcel Dekker Inc., New York 1993, p. 303ff.;Google Scholar
[7] Gutzow, I., Toschev, S., in: Advances in Nucleation and Crystallization of Glasses, ed. Hench, L.L., American Ceramic Society, Columbus 1971, p. 10ff.;Google Scholar
[8] Kelton, K.F., Greer, A.L., Thompson, C.V., J. Chem. Phys. 79 (1983), 6261;Google Scholar
[9] Blanke, H., Köster, U., Crystallization Statistics in Metal-Metalloid Glasses, Rapidly Quenched Metals I, eds. Steeb, S., Warlimont, H., (North-Holland Publ., Amsterdam 1985), p. 227ff.;Google Scholar
[10] Köster, U., Micromechanism of Crystallization in Metallic Glasses, in: Phase Transformations in Crystalline and Amorphous Alloys, ed. Mordike, B.L., Deutsche Gesellschaft für Metallkunde, Oberursel 1983), p. 113ff.;Google Scholar
[11] Aaron, H.B., Fainstein, D., Kotler, G.R., J. Appl. Phys. 41 (1970), 4404;Google Scholar
[12] Ohlberg, S. M., Golob, H. R., Stickler, D. W., Crystal Nucleation by Glass in Glass Separation, Symp. Nucleation and Crystallization in Glasses and Melts, The American Ceramic Society, Columbus (Ohio) 1962, p. 55ff.;Google Scholar
[13] Ramsden, A. H., James, P. F., J. Mater. Sci. 19 (1984), 1406;Google Scholar
[14] Chou, C.-P., Turnbull, D., J.Non-Cryst. Solids 17 (1975), 169;Google Scholar
[15] Chen, H. S., Mater. Sci. Eng. 23 (1976), 151;Google Scholar
[16] Busch, R., Schneider, S., Peker, A., Johnson, W. L., Appl. Phys. Lett. 67 (1995), 1544;Google Scholar
[17] Schneider, S., Geyer, U., Thiyagarajan, P., Johnson, W. L., Mat. Sci. Forum 235–238 (1997), 337;Google Scholar
[18] Köster, U., Alves, H., Meinhardt, J., Nanocrystalline Materials by Crystallization of Metallic Glasses, in: Proc. IUMRS (Tokyo 1993): Advanced Materials '93, Trans. Mat. Res. Soc. Japan Vol. 16A (1994), p. 69ff.;Google Scholar
[19] Greer, A.L., Mater. Sci. Eng. A179/180 (1994), 41;Google Scholar
[20] Köster, U., Meinhardt, J., Mater. Sci. Eng. A178 (1994), 271;Google Scholar
[21] Janlewing, R., Simulation der Quasikristallbildung in metallenen Zr-Basis-Gläsern, Ph.D. thesis, Dortmund 2001, Berichte aus der Werkstofftechnik, Shaker Verlag, Aachen 2002;Google Scholar
[22] Köster, U., Zander, D., Janlewing, R., Mater. Sci. Forum 386–388 (2002), 89;Google Scholar
[23] Janlewing, R., Köster, U., Mater.Sci.Eng. 304–306 (2001), 833;Google Scholar
[24] Köster, U., Meinhardt, J., Mater. Sci. Eng. A178 (1994), 27;Google Scholar
[25] Meinhardt, J., Entmischung, , Nanokristallisation und Quasikristallbildung in Zr-Basis-Gläsern, VDI Fortschrittsberichte, Reihe 5, Nr. 475, VDI-Verlag, Düsseldorf 1997;Google Scholar
[26] Bakke, E., Busch, R., Johnson, W.L., Appl. Phys. Lett. 67 (1995), 3260;Google Scholar
[27] Eckert, J., Mattern, N., Zinkevitch, M., Seidel, M., Mater. Trans. JIM 39 (1998), 623;Google Scholar
[28] Murty, B.S., Ping, D.H., Hono, K., Inoue, A., Appl. Phys. Lett. 76 (2000), 55;Google Scholar
[29] Murty, B.S., Ping, D.H., Hono, K., Inoue, A., Acta Mater. 48 (2000), 3985;Google Scholar
[30] Murty, B.S., Hono, K., Mater. Sci. Eng. A312 (2001), 253;Google Scholar
[31] Köster, U., Meinhardt, J., Roos, S., Busch, R., Mater. Sci. Eng. A226–228 (1997), 995.Google Scholar