Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T04:50:57.997Z Has data issue: false hasContentIssue false

Graphyne nanotubes: New Families of Carbon Nanotubes

Published online by Cambridge University Press:  11 February 2011

Vitor R. Coluci
Affiliation:
Instituto de Física, Universidade Estadual de Campinas, 13083–970, Campinas, SP, Brazil NanoTech Institute and Department of Chemistry, University of Texas at Dallas, 830688, Richardson, Texas
Scheila F. Braga
Affiliation:
Instituto de Física, Universidade Estadual de Campinas, 13083–970, Campinas, SP, Brazil
Sergio B. Legoas
Affiliation:
Instituto de Física, Universidade Estadual de Campinas, 13083–970, Campinas, SP, Brazil
Douglas S. Galvão
Affiliation:
Instituto de Física, Universidade Estadual de Campinas, 13083–970, Campinas, SP, Brazil
Ray H. Baughman
Affiliation:
NanoTech Institute and Department of Chemistry, University of Texas at Dallas, 830688, Richardson, Texas
Get access

Abstract

Fundamentally new families of carbon single walled nanotubes are proposed. These nanotubes, called graphynes, result from the elongation of covalent interconnections of graphite-based nanotubes by the introduction of yne groups. Similarly to ordinary nanotubes, armchair, zig-zag, and chiral graphyne nanotubes are possible. We present here results for the electronic properties of graphyne based tubes obtained from tight-binding and ab initio density functional methods.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iijima, S., Nature (London) 354, 56 (1991).Google Scholar
2. Sinnott, S. B. and Andrews, R., Crit. Rev. Sol. St. Mat. Sci. 26, 145 (2001), and references therein.Google Scholar
3. Rinzler, A. G. et al., Science 269, 1550 (1995).Google Scholar
4. Tans, S. J. et al., Nature 386, 474 (1997).Google Scholar
5. Kociak, M. et al., Phys. Rev. Lett. 86, 2416 (2001).Google Scholar
6. Kim, P., Shi, L., Majumdar, A., and McEuen, P. L., Phys. Rev. Lett. 87, 215502 (2001).Google Scholar
7. Baughman, R. H., Eckhardt, H., and Kertesz, M., J. Chem. Phys. 87, 6687 (1987).Google Scholar
8. Narita, N., Nagai, S., Suzuki, S., and Nakao, K., Phys. Rev. B 58, 11009 (1998).Google Scholar
9. Narita, N., Nagai, S., Suzuki, S., and Nakao, K., Phys. Rev. B 62, 11146 (2000).Google Scholar
10. Kroto, H. W. and Walton, D. R. M., in “The Fullerenes, New Horizons for the Chemistry, Physics and Astrophysics of Carbon”, ed. Kroto, H. W. and Walton, D. R. M. (Cambridge University Press, 1993), pp. 103112.Google Scholar
11. Hamada, N., Sawada, S.-I. and Oshiyama, A., Phys. Rev. Lett. 68, 1579 (1992).Google Scholar
12. Ordejón, P., Artacho, E., and Soler, J. M., Phys. Rev. B 53, R10441 (1996). For more information about the Siesta package, access the Web page: http://www.uam.es/siesta.Google Scholar
13. Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
14. Delley, B., J. Chem. Phys. 92, 508 (1990); 113, 7756 (2000). DMol3 is available from Accelrys, Inc. as part of the Cerius2 program suite. http://www.accelrys.com.Google Scholar
15. Saito, R., Fujita, M., Dresselhaus, G., and Dresselhaus, M. S., Phys. Rev. B 46, 1804 (1992).Google Scholar
16. Wallace, P. R., Phys. Rev. 71, 622 (1947).Google Scholar
17. Hoffman, R., J. Chem. Phys. 39, 1397 (1963).Google Scholar
18. Clementi, E. and Raimondi, D. L., J. Chem. Phys. 38, 2686 (1963).Google Scholar
19. Sonoda, M. et. al., Org. Lett. 3, 2419 (2001).Google Scholar
20. Srinivasan, M. et. al., Org. Lett. 2, 3849 (2000).Google Scholar
21. Wan, W. Brad. and Haley, M. M., J. Org. Chem. 66, 3893 (2001)Google Scholar
22. Zhou, Y. and Feng, S., Sol. St. Commun. 122, 307 (2002).Google Scholar
23. Rana, D. and Gangopadhyay, G., Chem. Phy. Lett. 334, 314 (2001).Google Scholar