Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T03:34:59.021Z Has data issue: false hasContentIssue false

Oxide Electrodes for Buried-Channel Field Effect Transistors

Published online by Cambridge University Press:  21 March 2011

A.G. Schrott
Affiliation:
IBM Research, T.J. Watson Research Center, Yorktown Heights, NY 10598
J.A. Misewich
Affiliation:
IBM Research, T.J. Watson Research Center, Yorktown Heights, NY 10598
D.W. Abraham
Affiliation:
IBM Research, T.J. Watson Research Center, Yorktown Heights, NY 10598
R. Ramesh
Affiliation:
Materials Research Science and Engineering. Center, University of Maryland, College Park, MD 20742
V. Nagarajan
Affiliation:
Materials Research Science and Engineering. Center, University of Maryland, College Park, MD 20742
Get access

Abstract

In this paper we describe the fabrication of oxide based electrodes that allow epitaxial growth of multilayer structures used to fabricate buried oxide-channel field effect transistors. The distinct characteristic of our buried electrodes is that they provide an etch stop layer which allow the opening of vias through the gate oxide using chemical etching. They can be patterned to define 1μm channel lengths and exhibit low contact resistance with channel materials such as YxPr1−xBa2Cu3O7-σ (YPBCO) or YBa2Cu3O7σ (YBCO).

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schrott, A.G., Misewich, J.A., Scott, B.A., Gupta, A., Newns, D. M., Abraham, D.W. in Multicomponent Oxide Films for Electronics, edited by Hawley, M.E., Blank, D.H., Eom, C-B., and Streiffer, S.K. (Mat. Res. Soc. Proc. 574, Pittsburgh, PA, 1999) pp.243248.Google Scholar
2. Misewich, J.A., Schrott, A.G., Appl. Phys. Lett., 76, 3632 (2000).Google Scholar
3. Newns, D.M., Misewich, J.A., Tsuei, C.C., Gupta, A., Scott, B.A., and Schrott, A.G., Appl. Phys Lett. 73, p.780 (1998).Google Scholar
4. Lambert, P. and Arsenault, B., J. Mat. Sci, 30, 3639 (1995).Google Scholar
5. Conte, D.A., Brown, W.D., Ang, S.S. and Naseem, H.A., Thin Solid. Films, 270, 493 (1995).Google Scholar
6. Ramesh, R., Gilchrist, H., Sands, T., Keramidas, V.G., Haakenaasen, R. and Fork, D.K., Appl. Phys. Lett., 63, 3592 (1993).Google Scholar
7. Foster, C.M., Bai, G.R., Csencsits, R., Vetrone, J., Jammy, R., Willis, L.A., Carr, E. and Amano, J., J. Appl. Phys., 81, 2349 (1997).Google Scholar
8. Schrott, A.G., Misewich, J.A., Copel, M., Abraham, D.W., and Neumayer, D.A., in Materials Science of Novel Oxide-Based Electronics, edited by Ginley, D.S., Newns, D.M., Kawazoe, H., Kozyrev, A.B., Perkins, J.D. (Mat. Res. Soc. Proc. 623, Pittsburgh, PA, 2000) pp. 2531.Google Scholar
9. Lippma, M., Kawasaki, M., Ohtomo, A., Sato, T., Iwatsuki, M., Koinuma, H., Appl. Surf..Sci., 130, 582 (1998).Google Scholar
10. Leridon, B., Defossez, A., Dumont, J., Contour, J. P., Physica C328, 104 (1999).Google Scholar
11. Wu, X. D., Inam, A., Venkatesan, T., Chang, C.C., Chase, E.W., Bartoux, P., Tarascon, J. M., and Wilkens, B., Appl. Phys. Lett., 52, 754 (1988).Google Scholar