Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T22:12:17.243Z Has data issue: false hasContentIssue false

High-Level Waste Glass Compendium; What it Tells us Concerning the Durability of Borosilicate Waste Glass

Published online by Cambridge University Press:  25 February 2011

J. C. Cunnane
Affiliation:
Argonne National Laboratory, Argonne, IL
J. M. Allison
Affiliation:
U.S. Department of Energy, EM-343, Washington, D.C.
Get access

Abstract

Facilities for vitrification of high-level nuclear waste in the United States are scheduled for startup in the next few years. It is, therefore, appropriate to examine the current scientific basis for understanding the corrosion of high-level waste borosilicate glass for the range of service conditions to which the glass products from these facilities may be exposed. To this end, a document has been prepared which compiles worldwide information on borosilicate waste glass corrosion. Based on the content of this document, the acceptability of canistered waste glass for geological disposal is addressed.

Waste glass corrosion in a geologic repository may be due to groundwater and/or water vapor contact. The important processes that determine the glass corrosion kinetics under these conditions are discussed. Testing data together with understanding of the long-term corrosion kinetics are used to estimate radionuclide release rates. These rates are discussed in terms of regulatory performance standards.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 White, J. M. and LaHaie, G., Atomic Energy of Canada, Ltd., Report CRCE-591 (1955).Google Scholar
2 Chacey, K. A., Pope, J. M., Plodinec, M. J., Schaus, P. S., and Maestras, E., Proc. of International Topical Meeting on High Level Radioactive Waste Management, Vol. 2, pp. 785789, Las Vegas, Nevada, April 8-12, 1990.Google Scholar
3 Cunnane, J. C., Bates, J. K., Ebert, W. L., Feng, X., Mazer, J. J., Wronkiewicz, D. J., Sproull, J., Bourcier, W. L., and McGrail, B. P., Mat. Res. Soc. Symp. Proc. (1993).Google Scholar
4 Strachan, D. M., McGrail, B. P., Apted, M. J., Engel, D. W., and Eslinger, P. W., Pacific Northwest Laboratory Report PNL-7591, (June 1990).Google Scholar
5 White, W. B., Theory of Corrosion of Glass and Ceramics, edited by Clark, D. E. and Zoitos, B. K., (Hayes Publications, Park Ridge, New Jersey, 1992).Google Scholar
6 Apted, M. J. and Engel, D. W., Proc. of the Int. High-Level Radioactive Waste Management Conf., Am. Nucl. Soc., Las Vegas, NV, April 8-12, 1990, p. 388 (1990).Google Scholar
7 Standard Practice, Cl 174-91, prepared by ASTM Subcommittee C26.13, ASTM, Philadelphia, PA (1991).Google Scholar
8 Kienzler, B., Mat. Res. Soc. Symp. Proc. 127, 191198 (1989).CrossRefGoogle Scholar
9 Peters, R. D. and Slate, S. C., Pacific Northwest Laboratory Report PNL-3948 (1981).Google Scholar
10 M Perez, J. Jr., and Westsik, J. H. Jr., Nuclear Chem. Waste Mgmt. 2, 165168 (1981).CrossRefGoogle Scholar
11 Bigford, D. F. and Pellarin, D. J., Mat. Res. Symp. Proc. 84, 509518 (1987).CrossRefGoogle Scholar
12 Jercinovic, M. J. and Ewing, R. C., Japanese, Swiss, Swedish Project Technical Report JSS-88-01 (1987).Google Scholar
13 Gram bow, B., Corrosion of Glass. Ceramics, and Ceramic Semiconductors, Principles. Testing and Applications, edited by Clark, D.E. and Zoitos, B. K., (Noyes Publications, Park Ridge, New Jersey, 1992).Google Scholar
14 Yasukisa, Y., Arai, T., Kamei, G., and Takano, H., Nikon Genshiryoku Yakkaishi 33 (9), 890905 (1990).Google Scholar
15 Tratingnon, L., Petit, J. C., Delia Mea, G. and Dvan, J. C., J. Nucl. Mater, 190, 228246 (1992).CrossRefGoogle Scholar
16 Vernaz, E. Y. and Dussossoy, J. L., Appl. Geochem. Suppl. Issue No. 1, 1322 (1992).CrossRefGoogle Scholar
17 Bunnell, L. R., Maupin, G. D., and Oma, K. H., Adv. Ceram. 20, 167173 (1986).Google Scholar
18 Grambow, B. and Strachan, D. M., Mat. Res. Soc. Symp. Proc. 26, 623634 (1984).CrossRefGoogle Scholar
19 Ebert, W. L. and Bates, J. K., Nucl. Technol. 104, 372384 (1993).CrossRefGoogle Scholar
20 Vernaz, E., Advocat, T., and Dussossoy, J. L., Ceram. Trans. 9, 175185 (1990).Google Scholar
21 Grambow, B., SKB Technical Report 9599 (1991).Google Scholar
22 Vernaz, E. Y., Mat. Res. Soc. Symp. Proc. 257, 3748 (1992).CrossRefGoogle Scholar
23 Scheetz, B. E., Freeborn, W. F., Smith, D. V., Anderson, C., Zolensky, M. and White, W. B., Mat. Res. Soc. Symp. Proc. 44, 129134 (1985).CrossRefGoogle Scholar
24 Bates, J. K., Ebert, W. L., and Gerding, T. J., Proc. of Int. High-Level Radioactive Waste Management Conf., Las Vegas, NV, April 8-12, p. 1095 (1990).Google Scholar
25 Title 10, Chapter 1, Code of Federal Regulations, Part 60, U.S. Nuclear Regulatory Commission (1986).Google Scholar
26 “Characterizatics of Potential Repository Wastes,” DOE IRW-0184-RI, Vols. (1992). Part A (1988).Google Scholar