Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T14:16:51.662Z Has data issue: false hasContentIssue false

Control of Growth Dynamics by Molecular Design in the MOCVD of Electronic Ceramics

Published online by Cambridge University Press:  10 February 2011

A. C. Jones
Affiliation:
Inorgtech Ltd., 25 James Carter Road, Mildenhall, Suffolk, IP28 7DE, UK.
T. J. Leedham
Affiliation:
Inorgtech Ltd., 25 James Carter Road, Mildenhall, Suffolk, IP28 7DE, UK.
P. J. Wright
Affiliation:
DRA Malvern, St. Andrews Road, Malvern, Worcs. WR14 3PS, UK.
M. J. Crosbie
Affiliation:
DRA Malvern, St. Andrews Road, Malvern, Worcs. WR14 3PS, UK.
D. J. Williams
Affiliation:
DRA Malvern, St. Andrews Road, Malvern, Worcs. WR14 3PS, UK.
P. A. Lane
Affiliation:
DRA Malvern, St. Andrews Road, Malvern, Worcs. WR14 3PS, UK.
P. O'brien
Affiliation:
Department of Chemistry, Imperial College of Science, Technology and Medicine, London, SW7 2BP, UK.
Get access

Abstract

The MOCVD technique is being used increasingly for the deposition of electronic ceramics such as Pb(Zr,Ti)O3, Ta2O5 and TiO2. For the mil potential of MOCVD to be realised, it is sometimes necessary to modify existing precursors so that process parameters in the MOCVD process are optimised. In this paper we describe our approach to “molecular design” and discuss how the substitution of simple alkoxide groups by β-diketonates or donor-functionalised ligands can result in precursors with improved physical properties and optimum MOCVD characteristics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mat. Res. Soc. Symp. Proc. 335, 1994 and references therein.Google Scholar
2. Gardiner, R.A., Van Buskirk, P.C. and Kirlin, P.S., Mat. Res. Soc. Proc., 335, 221, (1994)Google Scholar
3. Veltri, R.D. and Galasso, F.S., Ger. Offen, DE 3,427,911, Jan. 1986.Google Scholar
4. Khanna, V.K. and Nahar, R.K., Appl. Surf. Sci., 28, 247 (1987).Google Scholar
5. Desu, S.B., Shi, T. and Kwok, C.K., in: Chemical Vapor Deposition of Refractory Metals and Ceramics, Mat. Res. Soc. Symp. Proc., 168, 349 (1990) (eds. Besman, Th.M. and Gallois, B.M. ).Google Scholar
6. Crawford, J.C. and English, F.L., IEEE Trans. Electron Devices, ED- 16, 525 (1969).Google Scholar
7. Si, J., Desu, S.B. and Tsai, C.Y., J. Mater. Res., 9, 1721 (1994).Google Scholar
8. Hwang, C.S., and Kim, H.J., J. Mater. Res., 8, 1361 (1993).Google Scholar
9. Xue, Z., Vaartstra, B.A., Caulton, K.G., Chisholm, M.H., and Jones, D.L., Eur. J. Solid State Inorg. Chem., 29, 213 (1992.Google Scholar
10. Pulver, M. and Wahl, G., in: Chemical Vapor Deposition, Proc. 14th Int. Conf. And Euro CVD 11, Electrochem Soc. Proc., 97–25, 960 (1997).Google Scholar
11. Williams, D.J., DERA Malvern (UK), unpublished work (1997).Google Scholar
12. Jones, A.C., Leedham, T.J., Wright, P.J., Crosbie, M.J., Lane, P.A., Williams, D.J., Fleeting, K.A., Otway, D.J. and O'Brien, P., Chem. Vapor Deposition, in press.Google Scholar
13. Crosbie, M.J. and Wright, P.J., DERA Malvern, unpublished work ( 1997).Google Scholar
14. Fleeting, K.A., Otway, D.J., O'Brien, P., Jones, A.C. and Leedham, T.J., These Proceedings, abstract No. W 7.4.Google Scholar
15. Hitchens, W.R., Krusell, W.C., and Dobkin, D.M., J. Electrochem. Soc., 190, 2615 (1993).Google Scholar
16. Zaima, S., Furata, T., Yasuda, Y. and Iida, M., J. Electrochem. Soc., 137, 1297(1990)Google Scholar
17. Treichel, H., Mitwalsky, A., Tempel, G., Zorn, G., Kern, W., Sandler, N. and Lane, A.P., Mat. Res. Soc Symp. Proc. 282, 557 (1993).Google Scholar
18. Paulson, W. M., Hickernell, F.S. and Davis, R.L., J. Vac Sci. Technol., 16, 307, (1979).Google Scholar
19. Desu, S.B., Mat, Chem. Phys., 31, 341 (1992).Google Scholar
20. An, C.H. and Sugimoto, K., J. Electrochem. Soc., 139, 1956 (1992).Google Scholar
21. Takeshima, Y., Shiratsuyu, K., Takagi, H. and Tomono, K., Jpn. J. Appl. Phys. 34, 5083 (1995).Google Scholar
22. Treichel, H., Mitwalsky, A., Sandier, N.P., Tribula, D., Kern, W. and Lane, A.P., Adv. Mater. Optics Electron., 1, 299 (1992).Google Scholar
23. Wang, C.C., Zaainger, K.H. and Duffy, M.T., RCA Rev., 31, 723 (1970).Google Scholar
24. Data courtesy of J.C. Schumacher Inc. Carlsbad, USA.Google Scholar
25. Campbell, S.A., Gilmer, D.C., Wang, X-C., Hsieh, M-ta, Kim, H-S, Gladfelter, W.L. and Yan, J., IEEE Trans. Electron Devices, 44, 104 (1997)Google Scholar
26. Peng, C.H. and Desu, S.B., J. Am. Ceram. Soc., 77, 1799 (1994).Google Scholar
27. Yokozawa, M., Iwasa, H. and Teramoto, I., Jpn. J. Appl. Phys., 7, 96 (1968).Google Scholar
28. Beach, D. B. and Vallet, C.E., Mater. Res. Soc. Symp. Proc. 415, 225 (1996).Google Scholar
29. Roeder, J.F., Vaartstra, B.A., Van Buskirk, P.C. and Beratan, H.R., Mat. Res. Soc. Symp. Proc., 415, 123 (1996)Google Scholar
30. Jones, A.C., Leedham, T.J., Wright, P.J., Crosbie, M.J., Pemble, M.E., Fleeting, K.A., O'Brien, P., Chem. Vap. Deposition, submitted for publication.Google Scholar
31. Won, T., Yoon, S. and Kim, H., J. Electrochem. Soc., 139, 3284 (1992).Google Scholar