Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T22:59:26.810Z Has data issue: false hasContentIssue false

Microstructures of Si Surface Layers Implanted with Cu

Published online by Cambridge University Press:  22 February 2011

David M. Follstaedt
Affiliation:
Semiconductor Physics Dept., Sandia National Laboratories, Albuquerque, NM 87185-1056
Samuel M. Myers
Affiliation:
Semiconductor Physics Dept., Sandia National Laboratories, Albuquerque, NM 87185-1056
Get access

Abstract

The microstructures of Si ion-implanted with Cu have been characterized by TEM after annealing. For 1.2 at.%, the Cu is trapped at planar defects, but for 10 at.%, η-Cu3Si forms, allowing Cu to diffuse at its equilibrium solubility. These observations allow proper evaluation of the binding energies of Cu to previously formed internal cavities (2.2 eV) and η-Cu3Si (1.7 eV). The η-Cu3Si in the 10 at.% layer catalyzes oxidation of the Si. The microstructures also indicate that Si implanted with ~2 at.% Cu reforms epitaxially with embedded defects after 8 hr. at 700°C, but for ~10 at.% Cu, epitaxy is not recovered after 6 hours at 600ºC.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Huff, H., Proc. Fourth Intl. Symp. on ULSI Science and Technology, eds. Celler, G., Middlesworth, E. and Hoh, K. (Electrochemical Society, Pennington, NJ, 1993), p. 103.Google Scholar
2 Myers, S. M., Stein, H. J., Wampler, W. R. and Follstaedt, D. M., Mat. Res. Soc. Symp. Proc. 283, 549 (1993).Google Scholar
3 Myers, S. M., Follstaedt, D. M. and Bishop, D. M., Proc. 17th International Conference on Defects in Semiconductors, to be published.Google Scholar
4 Myers, S. M., Follstaedt, D. M. and Bishop, D. M., this volume.Google Scholar
5 Schröter, W., Seibt, M. and Gilles, D., in Materials Science and Technology, ed. Schröter, W., (VCH Publishers, New York, 1991) 4, p. 539589.Google Scholar
6 MRS Bulletin 18, No. 6 (June 1993) has several articles on Cu metallizations.Google Scholar
7 Harper, J.M., Charai, A., Stoltz, L., d'Heurle, F.M., Fryer, P., Appl. Phys. Lett. 56, 2519 (1990).Google Scholar
8 Alford, T. L., Adams, D., Li, J., Cao, B., Russel, S.W., Hong, S.Q., Spreitzer, R. and Mayer, J.W., Mat. Res. Soc. Proc. Advanced Metallizations for ULSI Applications (Japan, 1993), in press.Google Scholar
9 Griffioen, C.C., Evans, J.H., De Jong, P.C. and Van Veen, A., Nucl. Inst. Meth. 27, 417 (1987).Google Scholar
10 Dorward, R.C. and Kirkaldy, J. S., Trans Met. Soc. AIME 242, 2055 (1968).Google Scholar
11 Solberg, J. K., Acta Cryst. A 34, 684 (1978).Google Scholar
12 Weber, G., Gillor, B. and Barret, P., Phys. Stat. Sol. (a) 75, 567 (1983).Google Scholar
13 Olesinski, R. W. and Abbaschian, G. J., in Binary Alloy Phase Diagrams, eds. Massalski, T. B., Murray, J. L., Bennett, L.H. and Baker, H. (ASM, Metals Park, OH, 1986) Vol. 1, 960 (Cu-Si).Google Scholar
14 Mukherjee, K. P., Bandyopadhyaya, J. and Gupta, K. P., Trans. Met. Soc. 245, 2335 (1993).Google Scholar
15 Li, J., Mayer, J. W., Matienzo, L. J. and Emmi, F., Mat. Chem. Phys. 32, 390 (1992).Google Scholar