Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-11T09:27:48.968Z Has data issue: false hasContentIssue false

Extrusion Textures in NiAl and Reaction Milled NiAl/AlN Composites

Published online by Cambridge University Press:  15 February 2011

T. R. Bieler
Affiliation:
Department of Materials Science and Mechanics, Michigan State University, East Lansing, MI 48824
R. D. Noebe
Affiliation:
NASA-Lewis Research Center, Cleveland OH 44135
J. D. Whittenberger
Affiliation:
NASA-Lewis Research Center, Cleveland OH 44135
M. J. Luton
Affiliation:
EXXON Research Center, Annandale, NJ 08801
Get access

Abstract

Extrusion textures in monolithic NiAl and an NiAl/AlN particle composite are compared. The NiAl has a generally increasing grain size with extrusion temperature, and a corresponding transition from <110> to <111> fiber texture. The results suggests that <110> is more closely related to the deformation texture, while the <111> is a recrystallization orientation formed by preferential growth. The composite exhibits <311> fiber texture, and this is consistent with slip in <100> directions. The effect of the AlN particles is to prevent the orientation changes observed in the monolithic NiAl during recrystallization.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lücke, K., International Conference on Texture of Materials (ICOTOM 7), eds. Brakman, C.M., Jongenberger, P., Mittemeijer, E.G., (Netherlands Society for Materials Science, 1984), p. 195210.Google Scholar
2. Hutchinson, W.B. and Wilcox, B.A., Metal Science 7, 6, (1973).Google Scholar
3. Cahn... Physical Metallurgy 1983.Google Scholar
4. Humphreys, F.J., Metal Science 13, 136, (1979).CrossRefGoogle Scholar
5. Khadkikar, P.S., Michal, G.M., and Vedula, K., Metall. Trans. 21A, 279, (1990).CrossRefGoogle Scholar
6. Stout, J.J. and Crimp, M.A., Mat. Sci. & Eng., in press.Google Scholar
7. Harris, G.B., Phil. Mag., 43, 113, (1952).CrossRefGoogle Scholar
8. Whittenberger, J.D., Arzt, E., Luton, M.J., J. Mater. Res., 5, 2819, (1990).Google Scholar
9. Whittenberger, J.D., Arzt, E., Luton, M.J., in Intermetallic Matrix Composites, edited by Anton, D.L., McMeeking, R., Miracle, D. and Martin, P., (Mater. Res. Soc. Proc. 194, 1990), 211–18Google Scholar
10. Arzt, E., unpublished TEM imagesGoogle Scholar
11. Whittenberger, J.D., J. Mat. Sci. 22, 394, (1987).CrossRefGoogle Scholar
12. Whittenberger, J.D., J. Mat. Sci. 23, 235, (1988).CrossRefGoogle Scholar
13. Kallend, J.S., Kocks, U.F., Rollett, A.D. and Wenk, H.-R., Mat. Sci. and Eng. A132, 1, (1991).CrossRefGoogle Scholar
14. Ball, A. and Smallman, R.E., Acta Metall., 14, 1517, (1966).Google Scholar
15. Wasilewski, R.J., Butler, S.R. and Hanlon, J.E., Trans. Metall. Soc. AIME 239, 1357, (1967).Google Scholar
16. Loretto, M.H. and Wasilewski, R.J., Phil. Mag., 23, 1311 (1971).Google Scholar
17. Kim, J.T. and Gibala, R., in High Temperature Ordered Intermetallic Alloys IV, edited by Johnson, L., et.al., (Mater. Res. Soc. Proc. Vol. 213, Pittsburgh, PA, 1991), pp. 261–66.Google Scholar
18. Field, R.D., Lahrman, D.F. and Darolia, R., Acta Metall. Mater., 39, 2951, (1991).CrossRefGoogle Scholar
19. Miracle, D.B., Acta Metall. Mater., 39, 1457, (1991).CrossRefGoogle Scholar
20. Lloyd, C.H. and Loretto, M.H., Phys. Stat. Sol., 39, 163, (1970).CrossRefGoogle Scholar
21. Baker, I. and Schulson, E.M., Metall. Trans., 15A, 1129, (1984).CrossRefGoogle Scholar
22. Zaluzec, N.J. and Fraser, H.L., Scripta Metall., 8, 1049, (1974).CrossRefGoogle Scholar
23. Jin, Z. and Bieler, T.R., Superplasticity in Advanced Materials (ICSAM-91), eds. Hori, S., Tokizane, M., and Furushiro, N., Japan Society for Research on Superplasticity, (1991), p. 587.Google Scholar
24. Leslie, W.C., Trans. AIME 221, 752, (1961).Google Scholar