Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T11:42:35.743Z Has data issue: false hasContentIssue false

New n-type Silicide Thermoelectric Material with High Oxidation Resistance

Published online by Cambridge University Press:  07 February 2013

Ryoji Funahashi
Affiliation:
National Institute of Adv. Industrial Sci. and Tech., Midorigaoka, Ikeda, Osaka 563-8577, Japan CREST, Japan Science and Technology Agency, Chiyoda, Tokyo 102-0075, Japan
Yoko Matsumura
Affiliation:
National Institute of Adv. Industrial Sci. and Tech., Midorigaoka, Ikeda, Osaka 563-8577, Japan
Tomonari Takeuchi
Affiliation:
National Institute of Adv. Industrial Sci. and Tech., Midorigaoka, Ikeda, Osaka 563-8577, Japan
Hideaki Tanaka
Affiliation:
National Institute of Adv. Industrial Sci. and Tech., Midorigaoka, Ikeda, Osaka 563-8577, Japan
Wataru Norimatsu
Affiliation:
Nagoya University, Nagoya, Aichi 464-8603, Japan CREST, Japan Science and Technology Agency, Chiyoda, Tokyo 102-0075, Japan
Emmanuel Combe
Affiliation:
National Institute of Adv. Industrial Sci. and Tech., Midorigaoka, Ikeda, Osaka 563-8577, Japan
Ryosuke O. Suzuki
Affiliation:
Hokkaido University, Sapporo, Hokkaido 060-8628, Japan CREST, Japan Science and Technology Agency, Chiyoda, Tokyo 102-0075, Japan
Chunlei Wan
Affiliation:
Nagoya University, Nagoya, Aichi 464-8603, Japan CREST, Japan Science and Technology Agency, Chiyoda, Tokyo 102-0075, Japan
Yifeng Wang
Affiliation:
Nagoya University, Nagoya, Aichi 464-8603, Japan CREST, Japan Science and Technology Agency, Chiyoda, Tokyo 102-0075, Japan
Michiko Kusunoki
Affiliation:
Nagoya University, Nagoya, Aichi 464-8603, Japan CREST, Japan Science and Technology Agency, Chiyoda, Tokyo 102-0075, Japan
Kunihito Koumoto
Affiliation:
Nagoya University, Nagoya, Aichi 464-8603, Japan CREST, Japan Science and Technology Agency, Chiyoda, Tokyo 102-0075, Japan
Get access

Abstract

In order to achieve waste heat recovery using thermoelectric systems, thermoelectric materials showing high conversion efficiency over wide temperature range and high resistance against oxidation are indispensable. A silicide material with good n-type thermoelectric properties and oxidation resistance has been discovered. The composition and crystal structure of the silicide are found out Mn3Si4Al2 (abbreviated as 342 phase) and hexagonal CrSi2 structure, respectively. Element substitution of Mn with 3d transition metals is succeeded. Enhancement of Seebeck coefficient is observed in a Cr-substituted sample. The maximum dimensionless thermoelectric figure of merit ZT is 0.3 at 573 K in air for the Mn2.7Cr0.3Si4Al2 sample. Electrical resistivity of the Mn3Si4Al2 bulk sample holds constant value for 48 h at 873 K in air. This is due to formation of oxide passive layer on the surface of the bulk sample. The 342 phase is a promising n-type material with a good oxidation resistance in the middle temperature range of 500-800 K.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

World Energy Outlook, 2009 Edition, International World Energy, 2009.Google Scholar
Terasaki, I., Sasago, Y. and Uchinokura, K., Phys. Rev. B 56, R12685 (1997).CrossRefGoogle Scholar
Funahashi, R., Matsubara, I., Ikuta, H., Takeuchi, T., Mizutani, U. and Sodeoka, S., Jpn. J. Appl. Phys., 39, L1127 (2000).CrossRefGoogle Scholar
Funahashi, R. and Shikano, M., Appl. Phys. Lett., 81, 1459 (2002).CrossRefGoogle Scholar
Funahashi, R., Mikami, M., Mihara, T., Urata, S., Ando, N., J. Appl. Phys., 99, 066117 (2006).CrossRefGoogle Scholar
Urata, S., Funahashi, R., Mihara, T., Kosuga, A., Sodeoka, S., Tanaka, T., Int. J. Appl. Ceram. Tech., 4, 535 (2007).CrossRefGoogle Scholar
Tomes, P., Suter, C., Trottmann, M., Steinfeld, A., Weidenkaff, A., J. Mater. Res. 26, 1975 (2011).CrossRefGoogle Scholar
Inagoya, A., Sawaki, D., Horiuchi, Y., Urata, S., Funahashi, R., Terasaki, I., J. Appl. Phys., 110, 123712 (2011).CrossRefGoogle Scholar
Funahashi, R., Sci. Adv. Mater., 3, 683 (2011).CrossRefGoogle Scholar
Yamada, T., Miyazaki, Y., Yamane, H., Thin Solid Films, 519, 8524 (2011).CrossRefGoogle Scholar
Aoyama, I., Fedorov, M. I., Zaitsev, V. K., Solomkin, F. Y., Eremin, I. S., Samunin, A. Y., Mukoujima, M., Sano, S., and Tsuji, T., Jpn. J. Appl. Phys., 44, 8562 (2005).CrossRefGoogle Scholar
Wolfe, R., Wernick, J. H., and Haszko, S. E., Phys. Lett., 19, 449 (1965).CrossRefGoogle Scholar
Morikawa, K., Chikauchi, H., Mizoguchi, H., Sugihara, S., Mater. Trans., 48, 2100 (2007).CrossRefGoogle Scholar
JCPDS Card No. 35–0781.Google Scholar
Shannon, R. D. Acta Cryst., A32, 751 (1976).CrossRefGoogle Scholar
Funahashi, R., Matsumura, Y., Tanaka, H., Takeuchi, T., Norimatsu, W., Combe, E., Suzuki, R. O., Wang, Y., Wan, C., Katsuyama, S., and Koumoto, K., J. Appl. Phys, 112, 073713 (2012).CrossRefGoogle Scholar