Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T13:01:56.840Z Has data issue: false hasContentIssue false

Electrical Characterization of Polyfluorene-Based Metal-Insulator-Semiconductor Diodes

Published online by Cambridge University Press:  01 February 2011

M. Yun
Affiliation:
mynn3@mizzou.edu, University of Missouri, Department of Electrical and Computer Engineering, Columbia, MO, 65211, United States
M. Arif
Affiliation:
maa4y4@mizzou.edu, University of Missouri, Department of Physics, Columbia, MO, 65211, United States
S. Gangopadhyay
Affiliation:
gangopadhyays@missouri.edu, University of Missouri, Department of Electrical and Computer Engineering, Columbia, MO, 65211, United States
S. Guha
Affiliation:
guhas@missouri.edu, University of Missouri, Department of Physics, Columbia, MO, 65211, United States
Get access

Abstract

Polyfluorenes (PFs) have emerged as a promising family of blue polymer light-emitting diodes (PLED) due to their high electroluminescence quantum yield. Metal-insulator-semiconductor (MIS) diodes are the two terminal analogues of thin film transistors sharing the same basic layer structure. We have investigated two different structures based on poly [9,9'-(di 2-ethylhexyl)fluorene] (PF2/6), a MIS diode and a hole-only PLED. The MIS diodes were fabricated with the PF2/6 layer on p+ Si /Al2O3 substrates, and were characterized by means of capacitance-voltage (C-V) measurements as a function of frequency. From C-V measurements, the unintentional doping density is evaluated as ∼5.7×1017 cm−3 at frequencies above 20 kHz. The interface trap density is estimated as ∼7.2×1011 eV−1cm−2 at 10 kHz. Current-voltage measurements of PF2/6-based PLEDs shows a shallow trap space-charge-limited conduction from which the energy of the traps and hole mobilities are estimated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Grice, A. W., Bradley, D. D. C., Bernius, M. T., Inbasekaran, M., Wu, W. W., and Woo, E. P., Appl. Phys. Lett. 73, 629 (1998).Google Scholar
2 Ahles, M., Hepp, A., Schmechel, R., and Seggern, H. von, Appl. Phys. Lett. 84, 428 (2004).Google Scholar
3 Scherf, U. and List, E. J. W., Adv. Mater. 14, 477 (2002).Google Scholar
4 Tanto, B., Guha, S., Martin, C. M., Scherf, U., and Winokur, M. J., Macromolecules 37, 9438 (2004).Google Scholar
5 Knaapila, M., Lyons, B. P., Hase, T. P. A., Pearson, C., Petty, M. C., Bouchenoire, L., Thompson, P., Serimaa, R., Torkkeli, M., and Monkman, A. P., Adv. Funct. Mater. 9, 1517 (2005).Google Scholar
6 Wang, G., Moses, D., Heeger, A. J., Zhang, H.-M., Narasimhan, M., and Demaray, R. E., J. Appl. Phys. 95, 316 (2004).Google Scholar
7 Riess, W., Riel, H., Beierlein, T., Brütting, W., Müller, P., and Seidler, P. F., IBM J. Res. Dev. 45, 77 (2001).Google Scholar
8 Choi, K., Harris, H., Gangopadhyay, S., and Temkin, H., J. Vac. Sci. Technol. A 21, 718 (2003).Google Scholar
9 Nicollian, E. H. and Brews, J. R. in MOS Physics and Technology (Wiley, New York, 1981) pp.222224.Google Scholar
10 Brown, J., Sirringhaus, H., Harrison, M., Shkunov, M., and Friend, R. H., Phys. Rev. B 63, 125204 (2001).Google Scholar
11 Heiman, F. P. and Warfield, G., IEEE Trans. Electron Devices 12, 167 (1965).Google Scholar
12 Grecu, S., Bronner, M., Optiz, A., and Brütting, W., Synth. Met. 146, 359 (2004).Google Scholar
13 Lehovec, K., Solid-State Electron. 11, 135 (1968).Google Scholar
14 Lehovec, K. and Slobodoskoy, A., Solid-State Electron. 7, 59 (1964).Google Scholar
15 Streetman, B. G. and Banerjee, S., Solid Sate Electronic Devices (Prentice Hall, 5th edition, Upper Saddle River, 2000) pp. 260263.Google Scholar
16 Lampert, M.A. and Mark, P., Current injection in Solids (Academic Press, New York, 1970).Google Scholar
17 Torres, I., Taylor, D. M., and Itoh, E., Appl. Phys. Lett. 85, 314 (2004).Google Scholar