Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T02:43:11.847Z Has data issue: false hasContentIssue false

Formation and Electrical Transport Properties of Nickel Silicide Synthesized by Metal Vapor Vacuum Arc Ion Implantation

Published online by Cambridge University Press:  14 March 2011

X. W. Zhang
Affiliation:
Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, P. R. China
S. P. Wong
Affiliation:
Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, P. R. China
W. Y. Cheung
Affiliation:
Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, P. R. China
F. Zhang
Affiliation:
Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, P. R. China
Get access

Abstract

Nickel disilicide layers were prepared by nickel ion implantation into silicon substrates using a metal vapor vacuum arc ion source at various beam current densities to an ion dose of 6×1017 cm−2. Characterization of the as-implanted and annealed samples was performed using Rutherford backscattering spectrometry, x-ray diffraction, electrical resistivity and Hall effect measurements. The temperature dependence of the sheet resistivity and the Hall mobility from 30 to 400 K showed peculiar peak and valley features varying from sample to sample. A two-band model was proposed to explain the observed electrical transport properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tan, Z., Namavar, F., Budnick, J. I., Sanchez, F. H., Fasihuddin, A., Heald, S. M., Bouldin, C. E. and Woicik, J. C., Phys. Rev., B46, 4077 (1992).Google Scholar
2. Yew, J. Y., Chen, L. J. and Nakamura, K., Appl. Phys. Lett., 69, 999 (1996).Google Scholar
3. Xu, D. X., Das, S. R., Peters, C. J. and Erickson, L. E., Thin Solid Films, 326, 143 (1998).Google Scholar
4. Gao, K. Y., Liu, B. X., Appl. Phys., A68, 333 (1999).Google Scholar
5. Brown, I.G., Gavin, J. E. and MacGill, R. A., Appl. Phys. Lett., 47, 358 (1985).Google Scholar
6. Peng, Q., Wong, S.P., Wilson, I.H., Wang, N., Fung, K.K., Thin Solid Films 270, 573 (1995).Google Scholar
7. Peng, Q. and Wong, S.P., Mat. Res. Soc. Symp. Proc. 402, 487 (1996).Google Scholar
8. Doolittle, L.R., Nucl. Instrum. Meth. B5, 344 (1985).Google Scholar
9. Hensel, J. C., Tung, R. T. Poate, J. M. and Unterwald, F. C., Appl. Phys. Lett., 44, 913 (1984).Google Scholar
10. Murarka, S. P., Intermetallics, 3, 173 (1995).Google Scholar
11. Nava, F., Tu, K. N., Thomas, O., Senateur, J. P., Madar, R., Borghesi, A., G., . uizzetti, G., Gottlieb, U., Laborde, O. and Bisi, O., Mater. Sci. Rept., 9, 141 (1993).Google Scholar