Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T15:15:38.002Z Has data issue: false hasContentIssue false

Purpose-Built Anisotropic Metal Oxide Nanomaterials

Published online by Cambridge University Press:  21 March 2011

Lionel Vayssieres
Affiliation:
Department of Physics, Uppsala University, Box 530, SE-75121 Uppsala, Sweden
Jinghua Guo
Affiliation:
Department of Physics, Uppsala University, Box 530, SE-75121 Uppsala, Sweden
Joseph Nordgren
Affiliation:
Department of Physics, Uppsala University, Box 530, SE-75121 Uppsala, Sweden
Get access

Abstract

Large arrays of perpendicularly oriented anisotropic nanoparticles of ferric oxyhydroxide (Akaganeite, β-FeOOH) and oxide (Hematite, α-Fe2O3) of typically 3-5 nm in diameter, self-assembled as bundles of about 50 nm in diameter and of up to 1 μm in length have been successfully grown onto polycrystalline substrates without template and/or surfactant by heteronucleation from an aqueous solution of ferric salts and their optical and electronic properties investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jambor, J. L. and Dutrizac, J. E., Chem. Rev. 98, 25492585 (1998).Google Scholar
2. Stumn, W. and Morgan, J.J., Aquatic Chemistry (Wiley, 1996).Google Scholar
3. Winklemann, G., helm, F. Van der and Neidlans, J. B., Iron transport in Microbes, Plants and Animals (VCH, 1987).Google Scholar
4. Garvie, L. A. J. and Buseck, P. R., Nature 396, 667670 (1998).Google Scholar
5. Kostka, J. E., Haefele, E., Viehweger, R. and Stuck, J.W., Environ. Sci. Technol. 33, 31273133 (1999).Google Scholar
6. Bao, H. M., Koch, P. L. and Hepple, R. P., J. Sediment. Res. 68(5), 727738 (1998).Google Scholar
7. Ellwood, B. B., Petruso, K. M., Harrold, F. B. and Schuldenrein, D., J. Archeological Sci. 24, 569573 (1997).Google Scholar
8. Morris, R.V., Golden, D.C., Shelter, T.D. and Lauer, H.V., Meteorit. Planet. Sci. 33(4), 743751 (1998).Google Scholar
9. Stumm, W. and Sulzberger, B., Geochim. Cosmochim. Acta 56(8), 32333257 (1992).Google Scholar
10. Kletetschka, G., Wasilewski, P. and Taylor, P., Phys. Earth Planet. In. 119, 259267 (2000).Google Scholar
11. Lovley, D. R., Microbiol. Rev. 55(2), 259287 (1991).Google Scholar
12. Cornell, R. M. and Schwertmann, U., The Iron Oxides (VCH, 1996).Google Scholar
13. Morse, P. G., Chem. Eng. News 76(41), 4262 (1998).Google Scholar
14. Tano, K., Öberg, E., Samskog, P. O., Monredon, T. and Broussaud, A., Powder Technol. 105, 443450 (1999).Google Scholar
15. Ropenack, A. Von, in Dutrizac, J.E. and Monhemius, A.J. Eds. Iron control in Hydrometallurgy (Ellis Horwood, 1986) pp. 730741.Google Scholar
16. Pestman, R., Koster, R.M., Boellaard, E., Kraan, A.M. Van der and Ponec, V., J. Catal. 174, 142152 (1998).Google Scholar
17. Lin, S-S. and Gurol, M. D., Environ. Sci. Technol. 32, 14171423 (1998).Google Scholar
18. Zhang, Y., Ellison, J. E. and Cannon, J.C., Ind. Eng. Chem. Res. 36(5), 19481952 (1997).Google Scholar
19. Matsumoto, Y., J. Solid State Chem. 126, 227234 (1996).Google Scholar
20. Licht, S., Wang, B. and Ghosh, S., Science 285, 1391042 (1999).Google Scholar
21. Kellog, C. B., Irikura, K. K., J. Phys. Chem. A 103(8), 11501159 (1999).Google Scholar
22. Oh, S. E., Cook, D.C. and Townsend, H.E., Corrosion Sci. 41, 16871702 (1999).Google Scholar
23. Fujii, T. et al. Surf. Sci. 366(3), 579586 (1996).Google Scholar
24. Martinez, A., Pena, J., Labeau, M., Gonzalez-Calbet, J.M. and Vallet-Regi, M., J. Mater. Res. 10(5), 13071311 (1995).Google Scholar
25. Siroky, K., Jiresova, J. and Hudec, L., Thin Solid Films 245(1-2), 211214 (1994).Google Scholar
26. Weiss, W., Surf. Sci. 377(1-3), 943947 (1997).Google Scholar
27. Vayssieres, L., Hagfeldt, A. and Lindquist, S.- E., Pure Appl. Chem. 72(1-2), 4752 (2000).Google Scholar
28. Vayssieres, L., P h.D. Dissertation, Université Pierre et Marie Curie, Paris 1995.Google Scholar
29. Vayssieres, L., Chaneac, C., Tronc, E. and Jolivet, J.-P., J. Colloid Interface Sci. 205(2), 205212 (1998).Google Scholar
30. Vayssieres, L., Hagfeldt, A., Lindquist, S.-E., patent pending.Google Scholar
31. Vayssieres, L., Beermann, N., Lindquist, S.-E. and Hagfeldt, A., Chem. Mater. (in press).Google Scholar
32. Vayssieres, L., Keis, K., Lindquist, S.-E. and Hagfeldt, A., submitted.Google Scholar
33. Björksten, U., Moser, J. and Grätzel, M., Chem. Mater. 6, 858863 (1994).Google Scholar
34. Kennedy, J. H. and Frese, K. W., J. Electrochem. Soc. 125, 709 (1978).Google Scholar
35. Beermann, N., Vayssieres, L., Lindquist, S.-E. and Hagfeldt, A., J. Electrochem. Soc. 147(7), 24562461 (2000).Google Scholar
36. Guo, J.- H., Vayssieres, L., Såthe, C., Butorin, S. and J. Nordgren to be published.Google Scholar
37. Guo, J.-H., Vayssieres, L., Persson, C., Ahuja, R., and Nordgren, J. to be published.Google Scholar