Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T04:04:50.459Z Has data issue: false hasContentIssue false

Hydrogen Storage using Carbon Materials at Room Temperature

Published online by Cambridge University Press:  26 February 2011

H. Kajiura
Affiliation:
Sony Corporation, 2–1–1 Shinsakuragaoka, Hodogaya-ku, Yokohama-shi, Kanagawa, 240–0036, Japan Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801–3080, U.S.A.
S. Tsutsui
Affiliation:
Sony Corporation, 2–1–1 Shinsakuragaoka, Hodogaya-ku, Yokohama-shi, Kanagawa, 240–0036, Japan
K. Kadono
Affiliation:
Sony Corporation, 2–1–1 Shinsakuragaoka, Hodogaya-ku, Yokohama-shi, Kanagawa, 240–0036, Japan
Y. Murakami
Affiliation:
Sony Corporation, 2–1–1 Shinsakuragaoka, Hodogaya-ku, Yokohama-shi, Kanagawa, 240–0036, Japan
M. Kakuta
Affiliation:
Sony Corporation, 2–1–1 Shinsakuragaoka, Hodogaya-ku, Yokohama-shi, Kanagawa, 240–0036, Japan
M. Ata
Affiliation:
Sony Corporation, 2–1–1 Shinsakuragaoka, Hodogaya-ku, Yokohama-shi, Kanagawa, 240–0036, Japan
Get access

Abstract

The hydrogen adsorption capacity of commercially available carbon materials with different nanostructures was measured at room temperature using an apparatus based on a volumetric method with an error of less than 0.04 wt% per one gram of sample. The obtained results suggest that nanosutures of the sample influence the hydrogen adsorption capacity. To confirm this hypothesis, we prepared nanostructured graphite from graphite powder using a mechanical milling process at a pressure of 2.0 × 10−4 Pa. The untreated graphite adsorbed 0.02wt% of hydrogen at 6 MPa at room temperature, while 0.20 − 0.25 wt% of hydrogen can be repeatedly adsorbed by the nanostructured graphite. Measurements of the hydrogen adsorption rate at constant pressure and pore-size distribution imply that the hydrogen molecules are adsorbed through a diffusion process in pores with a diameter less than 1 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dillon, A.C., Jones, K.M., Bekkedahl, T.A., Kiang, C.H., Bethune, D.S. and Heben, M.J., Nature(London) 386, 377(1997).Google Scholar
2. Chambers, A., Park, C., Baker, R.T.K. and Rodriguez, N.M., J. Phys. Chem. B 102, 4253(1998).Google Scholar
3. Hou, P.X., Yang, Q.H., Bai, S., Xu, S.T., Liu, M. and Cheng, H.M., J. Phys. Chem. B 106, 963(2002).Google Scholar
4. Orimo, S., Majer, G., Fukunaga, T., Zuttel, Z., Schlapbach, L. and Fujii, H., Appl. Phys. Lett. 75, 3093(1999).Google Scholar
5. Liu, C., Yang, Q.H., Tong, Y., Cong, H.T. and Cheng, H.M., Appl. Phys. Lett. 80, 2389(2002).Google Scholar
6. Tibbetts, G.G., Meisner, G.P. and Olk, C.H., Carbon 39, 2291(2001).Google Scholar
7. Kiyobayashi, T., Takeshita, H.T., Tanaka, H., Takeichi, N., Zuttel, A., Schlapbach, L. and Kiriyama, N., J. Alloy. Compd. 330–332, 666(2002).Google Scholar
8. Kajiura, H., Tsutsui, S., Kadono, K., Kakuta, M., Ata, M. and Murakami, Y., Appl. Phys. Lett. 82, 1105(2003).Google Scholar
9. Kajiura, H., Kadono, K., Tsutsui, S. and Murakami, Y., Appl. Phys. Lett. 82, 1929(2003).Google Scholar
10. Quinn, D.F., Carbon 40, 2767(2002).Google Scholar
11. de la Case-Lillo, M.A., Lamari-Darkrim, F., Cazorla-Amoros, D. and Linares-Solano, A., J. Phys. Chem. B 106, 10930(2002).Google Scholar
12. Williams, K.A. and Eklund, P.C., Chem. Phys. Lett. 320, 352(2000).Google Scholar
13. Ritschel, M., Uhlemann, M., Gutfleisch, O., Leonhardt, A., Graff, A., Taschner, Ch. and Fink, J., Appl. Phys. Lett. 80, 2985(2002).Google Scholar
14. Shiraishi, M., Takenobu, T., Yamada, A., Ata, M. and Kataura, H., Chem. Phys. Lett. 358, 213(2002).Google Scholar
15. Horvath, G. and Kawazoe, K., J. Chem. Eng. Jpn. 16, 470(1983).Google Scholar
16. Murata, K., Kaneko, K., Steele, W.A., Kokai, F., Takahashi, K., Kasuya, D., Hirahara, K., Yudasaka, M. and Iijima, S., J. Phys. Chem. B 105, 10210(2001).Google Scholar
17. Cracknell, R.F., Phys. Chem. Chem. Phys. 3, 2091(2001).Google Scholar
18. Sameshima, J., Bull. Chem. Soc. Jpn. 7, 177(1932).Google Scholar