Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T04:44:32.063Z Has data issue: false hasContentIssue false

Ab initio structure determination of bethanechol chloride

Published online by Cambridge University Press:  29 February 2012

A. Le Bail*
Affiliation:
Laboratoire des Oxydes et Fluorures, CNRS UMR 6010, Université du Maine, Ave. O. Messiaen, 72085 Le Mans Cedex 9, France
*
a)Author to whom correspondence should be addressed. Electronic mail: armel.le_bail@univ-lemans.fr

Abstract

The structure of bethanechol chloride C7H17ClN2O2 is solved from conventional X-ray powder diffraction data in direct space [monoclinic unit cell with a=8.8749(3) Å, b=16.4118(7) Å, c=7.1373(3) Å, β=93.803(1)°, V=1037.29(7) Å3, Z=4, and space group P21/n]. The existence of a second orthorhombic closely related form is discussed.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergmann, J., Le Bail, A., Shirley, R., and Zlokazov, V. (2004). “Renewed interest in powder diffraction data indexing,” Z. Kristallogr. ZEKRDZ 219, 783790.10.1524/zkri.219.12.783.55862CrossRefGoogle Scholar
Carter, W. J. (2008). “Unexpected benefits of bethanechol in adults with cerebral palsy,” Med. J. Aust. ZZZZZZ 189, 293.CrossRefGoogle ScholarPubMed
Cummings, J. L., and Kaufer, D. (1996). “Neuropsychiatric aspects of Alzheimer’s disease: The cholinergic hypothesis revisited,” Neurology NEURAI 47, 876883.CrossRefGoogle ScholarPubMed
David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S., and Cole, J. C. (2006). “DASH: A program for crystal structure determination from powder diffraction data,” J. Appl. Crystallogr. JACGAR 39, 910915.10.1107/S0021889806042117CrossRefGoogle Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. JACGAR 1, 108113.10.1107/S002188986800508XCrossRefGoogle Scholar
Gražulis, S., Chateigner, D., Downs, R. T., Yokochi, A. F. T., Quirós, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P., and Le Bail, A. (2009). “Crystallography open database—An open-access collection of crystal structures,” J. Appl. Crystallogr. JACGAR 42, 726729.10.1107/S0021889809016690CrossRefGoogle ScholarPubMed
Guha, R., Howard, M. T., Hutchison, G. R., Murray-Rust, P., Rzepa, H., Steinbeck, C., Wegner, J., and Willighagen, E. L. (2006). “The blue obelisk—Interoperability in chemical informatics,” J. Chem. Inf. Model. ZZZZZZ 46, 991998.10.1021/ci050400bCrossRefGoogle ScholarPubMed
Le Bail, A. (2001). “ESPOIR: A program for solving structures by Monte Carlo from powder diffraction data,” Mater. Sci. Forum MSFOEP 378–381, 6570.10.4028/www.scientific.net/MSF.378-381.65CrossRefGoogle Scholar
Le Bail, A. (2004). “Monte Carlo indexing with MCMAILLE,” Powder Diffr. PODIE2 19, 249254.10.1154/1.1763152CrossRefGoogle Scholar
Le Bail, A. (2005). “Whole powder pattern decomposition methods and applications—A retrospection,” Powder Diffr. PODIE2 20, 316326.10.1154/1.2135315CrossRefGoogle Scholar
Le Bail, A. (2008). Principles and Applications of Powder Diffraction, edited by Clearfield, A., Reibenspies, J., and Bhuvanesh, N. (Wiley, New York), pp. 261309.Google Scholar
Le Bail, A., Cranswick, L. M. D., Adil, K., Altomare, A., Avdeev, M., Cerny, R., Cuocci, C., Giacovazzo, C., Halasz, I., Lapidus, S. H., Louwen, J. N., Moliterni, A., Palatinus, L., Rizzi, R., Schilder, E. C., Stephens, P. W., Stone, K. H., and van Mechelen, J. (2009). “Third structure determination by powder diffractometry round robin (SDPDRR-3),” Powder Diffr. PODIE2 24, 254262.10.1154/1.3200881CrossRefGoogle Scholar
Le Bail, A., Marcos, M. D., and Amorós, P. (1994). “Ab initio crystal structure determination of VO(H2PO2)2·H2O from X-ray and neutron powder diffraction data. A monodimensional vanadium(IV) hypophosphite,” Inorg. Chem. INOCAJ 33, 26072613.10.1021/ic00090a021CrossRefGoogle Scholar
Major, R. T. and Bonnett, H. T. (1943). US Patent No. 2,322,375 (22 June).Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. JACGAR 2, 6571.10.1107/S0021889869006558CrossRefGoogle Scholar
Rodríguez-Carvajal, J. (1993). “Recent advances in magnetic-structure determination by neutron powder diffraction,” Physica B PHYBE3 192, 5569.10.1016/0921-4526(93)90108-ICrossRefGoogle Scholar
Smith, G. S., and Snyder, R. L. (1979). “FN: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. JACGAR 12, 6065.10.1107/S002188987901178XCrossRefGoogle Scholar
Spek, A. L. (2003). “Single-crystal structure validation with the program PLATON,” J. Appl. Crystallogr. JACGAR 36, 713. 10.1107/S0021889802022112CrossRefGoogle Scholar