Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T03:49:16.223Z Has data issue: false hasContentIssue false

Multilevel Nonvolatile Memories Based on Nanowire / Molecular Wire Heterostructures

Published online by Cambridge University Press:  21 March 2011

Chao Li
Affiliation:
Chongwu Zhou Department of Electrical Engineering – Electrophysics, University of Southern California, Los Angeles, CA 90089, U. S. A.
Wendy Fan
Affiliation:
Eloret Corporation, MS 229-1, NASA Ames Research Center, Moffett Field, CA 94035, U.S.A.
Bo Lei
Affiliation:
Chongwu Zhou Department of Electrical Engineering – Electrophysics, University of Southern California, Los Angeles, CA 90089, U. S. A.
Daihua Zhang
Affiliation:
Chongwu Zhou Department of Electrical Engineering – Electrophysics, University of Southern California, Los Angeles, CA 90089, U. S. A.
Jie Han
Affiliation:
Eloret Corporation, MS 229-1, NASA Ames Research Center, Moffett Field, CA 94035, U.S.A.
M. Meyyapan
Affiliation:
Eloret Corporation, MS 229-1, NASA Ames Research Center, Moffett Field, CA 94035, U.S.A.
Get access

Abstract

Nonvolatile nanoscale memories with ultra-long retention times have been demonstrated for both binary and multilevel applications. These devices were based on nanowires functionalized with a self- assembled monolayer of redox active molecular wires, where the bit was represented by the charge stored in the redox molecules and the nanowire conductance was used as the readout. Our devices exhibited reliable operation, on/off ratios ∼ 104 and retention times ∼ one month, one of the longest retention times ever achieved with nanoscale devices. These devices were further tailored for multilevel data storage with appreciable noise margins, representing a new concept for functional devices. Our work clearly demonstrates the potential of combining nanowires and molecular wires for superior performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fuhrer, M. S., Nygard, J., Shih, L., Forero, M., Yoon, Y. G., Mazzoni, M., Choi, H., Ihm, J., Louie, S., Zettl, A., McEuen, P. L., Science 288, 494 (2000).Google Scholar
2. Dekker, C., Phys. Today 52, 22 (1999).Google Scholar
3. Zhou, C., Kong, J., Yenilmes, E., Dai, H., Science 290, 1552 (2000).Google Scholar
4. Gudiksen, M. S., Lauhon, L. J., Wang, J., Smith, D., Lieber, C. M., Nature (London) 415, 617 (2002).Google Scholar
5. Li, C., Zhang, D., Song, H., Liu, X., Tang, T., Zhou, C., Adv. Mater. 15, 143 (2003).Google Scholar
6. Law, M., Kind, H., Messer, B., Law, M., Yang, P., Adv. Mater. 14, 158 (2002).Google Scholar
7. Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P., Tour, J. M., Science 278, 252 (1997).Google Scholar
8. Reed, M. A., Chen, J., Rawlett, A. M., Price, D. W., Tour, J. M., Appl. Phys. Lett. 78, 3735 (2001).Google Scholar
9. Collier, C. P., Mattersteig, G., Wong, E., Luo, Y., Beverly, K., Sampaio, J., Raymo, F. M., Stoddart, J. F., Heath, J. R., Science 289, 1172 (2000).Google Scholar
10. Fuhrer, M. S., Kim, B. M., Durkop, T., Brintlinger, T., Nano letters, 2, 755 (2002).Google Scholar
11. Radosavljevic, M., Freitag, M., Thadani, K. V., Johnson, A. T., Nano letters, 2, 761 (2002).Google Scholar
12. Duan, X., Huang, Y., Lieber, C. M., Nano letters, 2, 487 (2002).Google Scholar
13. Zhang, D., Li, C., Han, S., Liu, X., Tang, T., Jin, W., Zhou, C., Appl. Phys. Lett. 82, 112 (2003).Google Scholar
14. Ulman, A., An introduction to ultrathin organic films: from Langmuir-Blodgett to self-assembly Boston, (1991).Google Scholar