Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T19:27:13.667Z Has data issue: false hasContentIssue false

Analysis of current-voltage characteristics in the wires-to-planes geometry during corona discharge

Published online by Cambridge University Press:  26 September 2014

Hakim Ait Said
Affiliation:
Laboratoire de Génie Electrique, Université A. Mira de Béjaïa, 06000 Béjaïa, Algeria
Hamou Nouri
Affiliation:
Laboratoire de Génie Electrique, Université A. Mira de Béjaïa, 06000 Béjaïa, Algeria
Youcef Zebboudj*
Affiliation:
Laboratoire de Génie Electrique, Université A. Mira de Béjaïa, 06000 Béjaïa, Algeria
*
Get access

Abstract

The behaviour of DC corona discharge in air that is free of particulate matter with the wires-to-plane geometry was analysed in this work. The formulae I = KV (V − V0) and I = A (V − V0)m commonly used for the current-voltage characteristics were used to determine the various corona parameters for the two polarities of the corona discharge. Using curve fitting, it has been shown that the geometric factors K and A and the exponent m are strongly affected by the number n of the discharging wires. However, the corona inception voltage determined from the measurements is weakly influenced when n is small, and it remained constant for n > 5 discharging wires. As for the breakdown voltage of the discharge, it is practically independent of the number n. Furthermore, it was verified that the two formulae above can be used for both negative and positive corona in multiple wires-to-plane geometries.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Copermann, G., IEEE Trans. Ind. Appl. 17, 236 (1981)CrossRef
Cooperman, P., Trans. AIEE 79, 47 (1960)
Al-Hamouz, Z.M., IEEE Trans. Ind. Appl. 38, 43 (2002)CrossRef
Beux, F., Iollo, A., Salvetti, M.V., Soldati, A., IEEE Trans. Ind. Appl. 38, 858 (2002)CrossRef
Mizuno, A., IEEE Trans. Ind. Appl. 7, 615 (2000)
Nouri, H., Zebboudj, Y., Eur. Phys. J. Appl. Phys. 49, 11001 (2010)CrossRef
Nouri, H., Zouzou, N., Moreau, E., Dascalescu, L., Zebboudj, Y., J. Electrostatics 70, 20 (2012)CrossRef
Nouri, H., Aissou, M., Zebboudj, Y., IEEE Trans. Dielectr. Electr. Insul. 20, 1547 (2013)
Zebboudj, Y., Iken, R., Eur. Phys. J. Appl. Phys. 10, 211 (2000)CrossRef
Townsend, M., Electricity in Gases (Oxford University Press, 1915), pp. 375376Google Scholar
Badareu, E., Popescu, I., Gaz ionisés: décharges électriques dans les gaz (Dunod, Paris, 1965)Google Scholar
Dupuy, J., RGE 67, 85 (1958)
Yamada, K., J. Appl. Phys. 96, 2472 (2004)CrossRef
Henson, B.L., J. Appl. Phys. 52, 709 (1981)CrossRef
Leal Ferreira, G.F., Oliveira, O.N., Giacometti, J.A., J. Appl. Phys. 18, 3045 (1986)CrossRef
Meng, X., Zhang, H., Zhu, J., J. Phys. D: Appl. Phys. 41, 065209 (2008)CrossRef
Aissou, M., Ait Said, H., Nouri, H., Zebboudj, Y., Eur. Phys. J. Appl. Phys. 61, 30803 (2013)CrossRef
Alen, N.L., Berger, G., Dring, D., IEEE Publication of I.A.S 1208 (1982)
Alen, N.L., Clarck, P., Dring, D., waters, R.T, ICGDA VII (Oxford, UK, 1985), p. 163Google Scholar
Jone, J.E., Dupuy, J., Schreiber, G.O.S., Waters, R.T., J. Phys. D: Appl. Phys. 21, 322 (1988)CrossRef
Zebboudj, Y., Hartmann, G., Eur. Phys. J. Appl. Phys. 7, 167 (1999)CrossRef