Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T22:23:03.074Z Has data issue: false hasContentIssue false

Innovative Device Architecture for High Efficiency Thin Film Silicon Solar Cells

Published online by Cambridge University Press:  16 May 2012

Mathieu Boccard
Affiliation:
Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin film Electronics Laboratory, Rue Bréguet 2, CH-2000 Neuchâtel, Switzerland
Matthieu Despeisse
Affiliation:
Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin film Electronics Laboratory, Rue Bréguet 2, CH-2000 Neuchâtel, Switzerland
Christophe Ballif
Affiliation:
Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin film Electronics Laboratory, Rue Bréguet 2, CH-2000 Neuchâtel, Switzerland
Get access

Abstract

The challenge for all photovoltaic technologies is to maximize light absorption, convert photons with minimal losses to electrical charges and efficiently extract them towards the electrical circuit. For thin film silicon solar cells, a compromise must be found as light trapping is usually performed through textured interfaces, that are detrimental to the subsequent growth of dense and high quality silicon layers. We introduce here the concept of smoothening intermediate reflecting layers (IRL), enabling to combine high currents and good electrical quality in Micromorph devices in the superstrate configuration. After exposing the motivation for such structures, we validate the concept by showing a VOCenhancement when employing a polished silicon-oxide-based IRL. Shunting issues and additional reflection losses are pointed out with such technique, highlighting the need to develop alternative techniques for an efficient morphology adaptation before the microcrystalline silicon cell growth.

Type
Plasmonics
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Meillaud, F.; Shah, A.; Droz, C.; Vallat-Sauvain, E. & Miazza, C., Efficiency limits for single-junction and tandem solar cells, Solar Energy Materials & Solar Cells, 2006, 90, 29522959 CrossRefGoogle Scholar
Deckman, H.W.; Wronski, C.R.; Witzke, H.; Yablonovitch, E. Appl. Phys. Lett. 1983, 42, 968.CrossRefGoogle Scholar
Faÿ, S.; Feitknecht, L.; Schlüchter, R.; Kroll, U.; Vallat-Sauvain, E.; Shah, A. Sol. Energy Mater. Solar Cells 2006, 90, 2960.CrossRefGoogle Scholar
Berginski, M. et al. . J. Appl. Phys. 2007, 101, 074903.CrossRefGoogle Scholar
Sakai, H.; Yoshida, T.; Hama, T.; Hichikawa, Y. Jap. J. Appl. Phys. 1990, 29, 630.CrossRefGoogle Scholar
Sai, H.; Kanamori, Y.; Kondo, M.; A. Appl. Phys. Lett. 2011, 98, 113502.CrossRefGoogle Scholar
Python, M.; Vallat-Sauvain, E.; Bailat, J. et al. . Journ. of Non-Cryst. Solids 2008, 354, 2258.CrossRefGoogle Scholar
Boccard, M.; Battaglia, C.; Hänni, S.; Söderström, K.; Escarré, J.; Nicolay, S.; Meillaud, F.; Despeisse, M. & Ballif, C. Nano Letters, 2012, doi: 10.1021/nl203909u Google Scholar
Buehlmann, P.; Bailat, J.; Dominé, D. et al. ., Appl. Phys. Lett. 2007, 91, 143505.CrossRefGoogle Scholar
Bailat, J.; Domine, D.; Schluchter, R., et al. ., Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Hawai, USA, 2006.Google Scholar
Boccard, M.; Soderstrom, T.; Cuony, P.; Battaglia, C.; Hanni, S.; Nicolay, S.; Ding, L.; Benkhaira, M.; Bugnon, G.; Billet, A.; Charriere, M.; Meillaud, F.; Despeisse, M. & Ballif, C., Optimization of ZnO Front Electrodes for High-Efficiency Micromorph Thin-Film Si Solar Cells, Photovoltaics, IEEE Journal of, 2012, doi:10.1109/JPHOTOV.2011.2180514 Google Scholar