Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T20:14:23.042Z Has data issue: false hasContentIssue false

Effects of diet calcium: phosporus ratio and metabolizable energy content on development of osteochondrosis, foot bending and performance in blue foxes

Published online by Cambridge University Press:  09 March 2007

H. T. Korhonen*
Affiliation:
Animal Production Research, Fur Animals, MTT Agrifood Research Finland, FIN-69100 Kannus, Finland
M. Happo
Affiliation:
University of Kuopio, Institute of Biotechnology, PO Box 70211 Kuopio 21, Finland
T. Rekilä
Affiliation:
Animal Production Research, Fur Animals, MTT Agrifood Research Finland, FIN-69100 Kannus, Finland
J. Valaja
Affiliation:
Animal Production Research, Animal Nutrition, MTT Agrifood Research Finland, FIN-31600 Jokioinen, Finland
I. Pölönen
Affiliation:
Finnish Fur Breeders' Association, POBox 5, FIN-01601 Vantaa, Finland
*
Get access

Abstract

Abstract The study evaluates the effects of two dietary Ca: P ratios (1·5: 1 v. 2·5: 1) and metabolizable energy (ME) contents (17·3 MJ/kg dry matter (DM) v. 19·2 MJ/kg DM) on the development of osteochondrosis, foot bending and performance in juvenile male blue foxes (Alopex lagopus). Four experimental groups (no. = 10 per group) were formed : (1) low energy, lagopus). low Ca: P (LELC); (2) normal energy, low Ca: P (NELC); (3) low energy, normal Ca: P (LENC); and (4) normal energy, normal Ca: P (NENC). The experiment started at weaning in mid July and finished in early October. From mid August onwards, animals on the normal energy diets (NELC, NENC) grew significantly faster (P < 0·001) than animals on the low energy diets (LELC, LENC). The final body weights of the normal energy groups were 1·5 kg higher than those of the low energy groups (P < 0·001). The dietary Ca: P ratio did not affect live-weight gain. Foot bending increased significantly from summer to autumn (P < 0·001). Changes in foot bending between initial and final evaluations showed that bending was significantly greater (P < 0·05) in animals on normal energy (NELC, NENC) than on low energy diets (LELC, LENC). Significant differences were not found in the mean degree of damage in foot and cartilage between the groups. Ulna breaking strength was significantly higher (P < 0·05) in normal energy (NELC, NENC) than in low energy (LELC, LENC) animals. Ulna calcium and phosphorus concentrations of the normal Ca: P (LENC, NENC) groups were significantly higher (P < 0·001, P < 0·05) than those of the lower Ca: P (LELC, NELC) groups. The bone (ulna) calcium and phosphorus concentrations tended to be higher in the normal energy (NELC, NENC) than in the low energy (LELC, LENC) groups (calcium P = 0·07; phosphorus P = 0·06). The bone Ca: P ratio was higher (P < 0·001) in the normal (LENC, NENC) than in the low Ca: P diet (LELC, NELC) animals. The carcass weights of normal energy animals (NELC, NENC) were significantly higher (P < 0·001) than those of low energy (LELC, LENC) animals. The fat : dry matter ratio was higher (P < 0·05) in normal (NELC, NENC) than in low energy (LELC, LENC) carcasses. We conclude that the Ca: P ratio of the diet has no effect on the development of osteochondrosis or bending of the foot. The higher body weight caused by normal as opposed to low metabolizable energy content seems, however, to increase the incidence of foot bending.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahola, L., Harri, M., Kasanen, S., Mononen, J. and Pyykönen, T. 2000. Effect of family housing of farmed silver foxes (Vulpes vulpes) in outdoor enclosures on some behavioural and physiological parameters. Canadian Journal of Animal Science 80: 427434.CrossRefGoogle Scholar
Anonymous. 2001. Turkiseläinten ruokintasuositukset. Maa- jaelintarviketalouden tutkimuskeskus.Google Scholar
Bassett, C. F., Harris, L. E. and Wilke, C. F. 1951. Effect of various levels of calcium, phosporus and vitamin D intake on bone growth. II. Minks. Journal of Nutrition 44: 433442.CrossRefGoogle Scholar
Beale, B. S. 1999. Osteochondrosis in dogs: surgical indications and considerations. Proceedings of the North American Veterinary Conference 13: 471472.Google Scholar
Berg, H. 1986. Turkiseläintutkimuksia 23. Suomen Turkiseläinten Kasvattajain Liitto ry, Vaasa. Painoupinta ky.Google Scholar
Boudrieau, B. J., Hohn, R. B. and Barder, J. F. 1983. Osteochondrosis dissecans of the elbow in the dog. Journal of the American Hospital Association 19: 627635.Google Scholar
Chesemore, D. L. 1975. Ecology of the arctic fox (Alopex lagopus ) in North America–a review. In The wild canids, their systematics, behaviour, ecology and evolution (ed. Fox, M. W.), pp. 143164. Van Nostrand Reinhold Co., New York.Google Scholar
Crenshaw, T. D., Peo, E. R., Lewis, A. J., Moser, B. D. and Olson, D. 1981. Ingfluence of age, sex and calcium and phosphorus levels on the mechanical properties of various bones in swine. Journal of Animal Science 52: 13191327.CrossRefGoogle ScholarPubMed
Enggaard Hansen, N., Glem-Hansen, N. and Jorgensen, G. 1992. Effects of dietary calcium-phosphorus ratio on growth, skin length and quality in mink (Mustela vison). Scientifur 4: 293297.Google Scholar
Frafjord, K. 1993. Food habits of arctic foxes (Alopex lagopus) on the western coast of Svalbard. Arctic 1: 4954.Google Scholar
Grondalen, J. and Lingaas, F. 1991. Arthrosis in the elbow joint of young rapidly growing dogs: a genetic investigation. Journal of Small Animal Practice 32: 420464.Google Scholar
Guthrie, S. and Pidduck, H. G. 1990. Heritability of elbow osteochondrosis within a closed population of dogs. Journal of Small Animal Practice 31: 9396.CrossRefGoogle Scholar
Happo, M. 2002. Siniketun (Alopex lagopus) varhaiskasvun ruokinnassa käytetyn rehun energia- ja kalsiumpitoisuuksien vaikutus jalkojen luiden kuntoon ja osteokondroosin syntyyn. Progradu examination, University of Kuopio, Finland.Google Scholar
Harris, L. E., Basset, C. F. and Wilke, C. F. 1951. Effect of various levels of calcium, phosphorus and vitamin D intake on bone growth. I. Foxes. Journal of Nutrition 43: 153165.CrossRefGoogle Scholar
Haug, E., Sand, O. and Sjaastad, O. V. 1992. Ihmisen fysiologia. WSOY, Porvoo.Google Scholar
Hedhammar, A., Wu, F. M., Krook, L., Schryver, H. F., DelaHunta, A., Whalen, J. P., Kallfelz, F. A., Nunex, E. A., Hintz, H. F., Sheffy, B. E. and Ryan, G. D. 1974. Overnutrition and skeletal disease. An experimental study in growing Great Dane dogs. Cornell Veterinary volume 64, suppl. 5.Google ScholarPubMed
Hiidenkari, U., Kärppä, J., Rosenholm, A. -L. and Söderholm, S. 1996. Koiran ravitsemus ja ruokinta. Suomen Nestle Oy, Espoo.Google Scholar
Houlton, J. E. F. 1984. Osteochondrosis of the shoulder and elbow joints in dogs. Journal of Small Animal Practice 25: 399413.CrossRefGoogle Scholar
Kallfelz, F. A. and Wentworth, R. A. 1970. Evaluation of bone calcium accretion rate as a function of age in beagle dogs. Journal of Nutrition 99: 459464.CrossRefGoogle Scholar
Kangas, J. 1974. Minkens och rävens mineralbehov. Bilaga till NJF: s möte om optimal utfodring av mink och räv, Grenå, 1921 09 1974.Google Scholar
Kasström, H. 1975. Nutrition, weight gain and development of hip dysplasia. An experimental investigation with special reference to the effect of feeding intensity. Acta Radiology 334: (suppl.) 135179.Google Scholar
Korhonen, H. and Harri, M. 1988. Regulation of energy balance in farmed canids. In Biology, pathology and genetics of fur bearing animals (ed. Murphy, B. D. and Hunter, D. B.), proceedings of the IV international congress in fur animal production, August 21–24, 1988,Ontario, pp. 344350.Google Scholar
Korhonen, H., Jauhiainen, L., Niemelä, P., Harri, M. and Saunaaho, R. 2001. Physiological and behavioural responses in blue foxes (Alopex lagopus): comparisons between space quantity and floor material. Animal Science 72: 375387.CrossRefGoogle Scholar
Korhonen, H. and Niemelä, P. 1998. Effect of ad libitum and restrictive feeding on seasonal weight changes in captive minks (Mustela vison). Journal of Animal Physiology and Animal Nutrition 79: 269280.CrossRefGoogle Scholar
Korhonen, H., Niemelä, P., Jauhiainen, L. and Tupasela, T. 2000 Effects of space allowance and earthen floor on welfare-related physiological and behavioural responses in male blue foxes. Physiology and Behavior 69: 571580.CrossRefGoogle ScholarPubMed
Leppänen, A., Mäki, K., Juga, J. and Saloniemi, H. 2000. Factors affecting hip dysplasia in German Shepherd dogs in Finland: efficacy of the current improvement programme. Journal of Small Animal Practice 41: 1923.CrossRefGoogle ScholarPubMed
Lohi, O., Johannesen, K. -R., Borsting, E., Einarsson, E. J., Joutsenlahti, U., Lagerkvist, G. and Johnsson, M. 1989. Analyses of pelt prices as an aid in breeding programmes. NJF utredning rapporter nr. 54.Google Scholar
Reiland, S. 1975. Osteochondrosis in the pig. Royal Veterinary College, Stockholm.Google Scholar
Rekilä, T., Korhonen, H., Pölönen, I. and Harri, M. 2000. Relationship between feed intake, body mass and skin length in blue foxes. Scientifur 24: 155158.Google Scholar
Rimeslåtten, H. 1976. Experiments in feeding different levels of protein, fat and carbohydrates to blue foxes. The first international scientific congress in fur animal production, Helsinki, 27–29 04 1976, p. 21.Google Scholar
Smith, C. W. 1991. Osteochondrosis in the dog – diagnosis, treatment, and prognosis. Canine Practice 16: 1522.Google Scholar
Statistical Analysis Systems Institute. 1989. SAS/STAT user's guide, version 6, fourth edition. SAS Institute, Cary, NC.Google Scholar
Tauson, A. -H., Olafsson, B. L., Elnif, J., Treuthardt, J. and Ahlstrom, O. 1992. Minkens och rävens mineralfö mineralförjning. NJFutredning/rapport nr. 79, Copenhagen.Google Scholar
Underwood, L. and Mosher, J. L. 1982. Arctic fox. In Wild mammals of North America (Chapman, J. A. and Feldhammer, G. A.), pp. 491502. The Johns Hopkins University Press, Baltimore.Google Scholar
Valaja, J., Pölönen, I., Jalava, T., Perttilä, S. and Niemelä, P. 2000. Effect of dietary mineral content on mineral metabolism and performance of growing blue foxes. Scientifur 24: 2831.Google Scholar
Valaja, J., Pölönen, I., Rekilä, T., Nenonen, N. and Jalava, T. 2002. Calcium and phosporus nutrition of blue foxes. NJF-seminar no. 347, 2. 4 10 2002, Vuokatti, Finland.Google Scholar