Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T05:04:52.597Z Has data issue: false hasContentIssue false

Breit-Wigner-Fano Lineshape Analysis of the angential G-band of Metallic Nanotubes

Published online by Cambridge University Press:  15 March 2011

Sandra D. Brown
Affiliation:
Department of Physics
Ado Jorio
Affiliation:
Department of Physics
Paola Corio
Affiliation:
Department of Physics
Mildred Dresselhaus
Affiliation:
Department of Physics Department of Electrical Engineering and Computer Science
Gene Dresselhaus
Affiliation:
FrancisBitter National Magnet Laboratory, Massach usetts nstitute of Technology, Cambridge, A 02139-4307
Katrin Kneipp
Affiliation:
Department of Electrical Engineering and Computer Science Technical University of Berlin, Berlin, 10623, Germany
Get access

Abstract

We present a resonant Raman study of the tangential G-band in metallic SWNTs. By measuring the Raman spectra for isolated SWNTs, we show that the two different lineshapes observed for semiconducting and metallic SWNTs in bundles also occur for isolated SWNTs. A lineshape analysis of the tangential G-band feature for metallic SWNT bundles is presented, showing that only two components are present, the higher frequency component having a Lorentzian lineshape, and the lower one having a Breit–Wigner–Fano (BWF) line-shape. Through comparisons of the Raman tangential G-band spectra from three different diameter distributions of carbon nanotubes, we find that both the frequency and linewidth of the BWF component are diameter dependent.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Saito, R., Dresselhaus, G., and Dresselhaus, M. S., Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).Google Scholar
[2] Dresselhaus, M. S. and Eklund, P. C., Advances in Physics 49, 705814 (2000).Google Scholar
[3] Jorio, A., Saito, R., Hafner, J., Lieber, C. M., Hunter, M., McClure, T., Dresselhaus, G., and Dresselhaus, M. S., Phys. Rev. Lett. 86, 11181121 (2001).Google Scholar
[4] Pimenta, M. A., Marucci, A., Empedocles, S., Bawendi, M., Hanlon, E. B., Rao, A. M., Eklund, P. C., Smalley, R. E., Dresselhaus, G., and Dresselhaus, M. S., Phys. Rev. B Rapid 58, R16016–R16019 (1998).Google Scholar
[5] Jorio, A., Dresselhaus, G., Dresselhaus, M. S., Souza, M., Dantas, M. S. S., Pimenta, M. A., Rao, A. M., Saito, R., Liu, C., and Cheng, H. M., Phys. Rev. Lett. 85, 26172620 (2000).Google Scholar
[6] Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I, Suzuki, S., Ohtsuka, Y., and Achiba, Y., Synthetic Metals 103, 2555 (1999).Google Scholar
[7] Brown, S. D. M., Jorio, A., Corio, P., Dresselhaus, M. S., Dresselhaus, G., Saito, R., and Kneipp, K., Phys. Rev. B - Rapid Comm., in press (2001).Google Scholar
[8] Klein, M. V., in Light Scattering in Solids I, edited by Cardona, M., page 172. Spring-Verlag, Berlin, 1983.Google Scholar
[9] Jorio, A., Brown, S. D. M., Dresselhaus, G., Dresselhaus, M. S., Pimenta, M. A., Saito, R., Rao, A. M., and Kneipp, K.. In Nanotubes and Related Materials: MRS Symposium Proceedings, Boston, November 2000, edited by Fischer, J., Zhou, O., Colbert, D. T., Bernier, P., and Iijima, S., Materials Research Society Press, Pittsburgh, PA, 2000.Google Scholar