Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T20:29:33.496Z Has data issue: false hasContentIssue false

Superconducting Properties of Ultrathin YBa2CU3O7 Films

Published online by Cambridge University Press:  26 February 2011

T. Terashima
Affiliation:
Institute for Chemical Research, Kyoto University, Uji 611, Japan
K. Shimura
Affiliation:
Institute for Chemical Research, Kyoto University, Uji 611, Japan
Y. Daitoh
Affiliation:
Institute for Chemical Research, Kyoto University, Uji 611, Japan
Y. Yano
Affiliation:
Institute for Chemical Research, Kyoto University, Uji 611, Japan
Y. Bando
Affiliation:
Institute for Chemical Research, Kyoto University, Uji 611, Japan
Y. Matsuda
Affiliation:
Department of Pure and Applied Sciences, University of Tokyo, 3–8–1 Komaba, Meguro-ku, Tokyo 153, Japan
S. Komiyama
Affiliation:
Department of Pure and Applied Sciences, University of Tokyo, 3–8–1 Komaba, Meguro-ku, Tokyo 153, Japan
Get access

Abstract

Ultrathin YBa2CU3O7 (YBCO) films were epitaxially grown on non-superconducting PrBa2CU3O7 (PrBCO) buffer layer by reactive evaporation, in which the crystal growth was controlled through the monitoring of reflection high energy electron diffraction (RHEED) specular intensity oscillations. Atomic force microscope (AFM) observation reveals that the steps in the surface of ultrathin YBCO films (∼100Aå) have one-unit-cell height, implying a unit cell-by-unit cell growth manner. One-unit-cell thick (1-UCT) YBCO layer exhibits superconductivity when charge reservoir layers of BaO-CuO-BaO are located above and below the CuO2 bilayer interposed with an Y layer. Essential transport properties of the normal state in bulk YBCO, such as T-linear dependence of resistivity and T-1 dependence Of Hall resistivity, are found to be inherent in the individual CuO2 bilayer. Study of diagonal and Hall resistivities provides evidence of Kosterlitz-Thouless transition to be occurred in 1-UCT YBCO.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Terashima, T., Shimura, K., Bando, Y., Matsuda, Y., Fujiyama, A., and Komiyama, S., Phys. Rev. Lett. 67, 1362 (1991).Google Scholar
2. Kosterlitz, J. M. and Thouless, D. J., J. Phys. C 6, 1181 (1972); Prog. Low. Temp. Phys. 7, 373 (1978).Google Scholar
3. Halperin, B. I. and Nelson, D. R., J. Low Temp. Phys. 36, 599 (1980).Google Scholar
4. Beaseley, M. R., Mooij, J. E., and Prlando, T. P., Phys. Rev. Lett. 42, 1165 (1979).Google Scholar
5. Artemenko, S. N., Gorlova, I. G., and Latyshev, Yu. I., Phys. Lett. A 138, 428 (1989).Google Scholar
6. Martin, S., Fiory, A. T., Fleming, R. M., Espinosa, G. P., and Cooper, A. S., Phys. Rev. Lett. 62, 677 (1989).Google Scholar
7. Ban, M., Ichiguchi, T., and Onogi, T., Phys. Rev. B 40, 4419 (1989).Google Scholar
8. Kim, D. H., Goldman, A. M., Kang, J. H., and Kampwirth, R. T., Phys. Rev. B 40, 8834 (1989).Google Scholar
9. Fiory, A. T., Hebard, A. F., Mankiewich, P. M., and Howard, R. E., Phys. Rev. Lett 61, 1419, (1988).Google Scholar
10. Triscone, J. -M., Fischer, Ø., Brunner, O., Antognazza, L., Kent, A. D., and Karkut, M. G., Phys. Rev. Lett. 64, 804 (1990).Google Scholar
11. Li, Q., Xi, X. X., Wu, X. D., Inam, A., Vadlamannati, S., McLean, W. L., Venkatesan, T., Ramesh, R., Hwang, D. M., Martinez, J. A., and Nazar, L., Phys. Rev. Lett. 64, 3086 (1990).Google Scholar
12. Lowndes, D. H., Norton, D. P., and Budai, J. D., Phys. Rev. Lett. 65, 1160 (1990).Google Scholar
13. Gerber, Ch., Anselmetti, D., Bednorz, J. G., Mannhart, J., and Schlom, D. G., Nature 350, 279 (350).Google Scholar
14. Hawley, M., Raistrick, I. D., Beery, J. G., and Houlton, R. J., Science 251, 1587 (1991).Google Scholar
15. Moreland, J., Rice, P., Russek, S. E., Jeanneret, B., Roshko, A., Ono, R. H., and Rudman, D. A., Appl. Phys. Lett. 59, 3039 (1991).Google Scholar
16. Zheng, X. Y., Lowndes, D. H., Zhu, S., Budai, J. D., Warmack, R. J., Phys. Rev. B 45, 7584 (1992).Google Scholar
17. Terashima, T., Bando, Y., lijima, K., Yamamoto, K., Hirata, K., Hayashi, K., Kamigaki, K., Terauchi, H., Phys. Rev. Lett. 65, 2684 (1990).Google Scholar
18. lijima, K., Terashima, T., Bando, Y., Kamigaki, K., and Terauchi, H., unpublished.Google Scholar
19. Cava, R. J., Hewat, A. W., Hewat, E. A., Batlogg, B., Marezio, M., Rabe, K. M., Krajewski, J. J., Peck, W. F. Jr, and Rupp, L. W. Jr, Physica C 165, 419 (1990).Google Scholar
20. Kadm, A. M., Epstein, K., and Goldman, A. M., Phys. Rev. B 27, 6691 (1983).Google Scholar
21. Bardeen, J. and Stephen, M. J., Phys. Rev. 140, A1197 (1965).Google Scholar
22. Iye, Y., Nakamura, S., and Tamegai, T., Physica C 159, 616 (1989).Google Scholar
23. Chien, T. R., Jing, T. W., Ong, N. P., and Wang, Z. Z., Phys. Rev. Lett. 66, 3075 (1991).Google Scholar
24. Hagan, S. J., Lobb, C. J., Greene, R. L., and Eddy, M., Phys. Rev. B 43, 6246 (1991).Google Scholar
25. Wang, Z. D. and Ting, C. S., Phys. Rev. Lett. 67, 3618 (1991).Google Scholar
26. Noziéres, P. and Vinen, W. F., Phylos. Mag. 14, 667 (1966).Google Scholar