Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T01:49:18.568Z Has data issue: false hasContentIssue false

Diode Pumped 2-μm Lasers Using Tm,Ho Codoped YLF, LuLF, LuAG and GdVO4 Crystals

Published online by Cambridge University Press:  01 February 2011

Kazuhiro Asai
Affiliation:
Toho Institute of Technology, Sendai 982-0831, Japan
Atsushi Sato
Affiliation:
Toho Institute of Technology, Sendai 982-0831, Japan
Kohei Mizutani
Affiliation:
National Institutes of Information and Communications Technology, Tokyo184-8795, Japan
Get access

Abstract

Tm, Ho codoped YLF, LuLF,and LuAG and GdVO4 crystals are very attractive for diode pumped 2-μm lasers. A comparison study of laser performance was made using a diode-pumped, quasi-end-pump scheme at various pulse repetition frequencies and temperatures. At 5 Hz and at an operating temperature of 300 K, normal mode laser output energies of 15.7 mJ (YLF) with a slope efficiency of 7.3%, 26.8mJ (LuLF) with that of 12.6% and 20.0 mJ (LuAG) with that of 10.8% were achieved using 5%Tm and 0.5%Ho, respectively. A Tm,Ho:GdVO4 laser was also investigated. It was found, in the case of GdVO4, that optimum Tm and Ho dopant concentrations were slightly lower than those for garnet and fluoride crystals. Using a 3% Tm,0.3% Ho:GdVO4 crystal, an output energy of 31.2 mJ with a slope efficiency of 14.5% was obtained in normal mode operation at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yu, J. Singh, U. N. Barnes, N. P. and Petros, M.125-mJ diode-pumped injection-seeded Ho:Tm:YLF laser,” Opt. Lett. 23, 780782 (1998).Google Scholar
2 Koch, G. J. Petros, M. Yu, J. and Singh, U. N.Precise wavelength control of a singlefrequency pulsed Ho:Tm:YLF laser,” Appl. Opt. 41, 17181721 (2002).Google Scholar
3 Yu, J. Braud, A. and Petros, M.600-mJ, double-pulse 2-μm laser,” Opt. Lett. 28, 540542 (2003).Google Scholar
4 Koch, Grady J. Barnes, Bruce W. Petros, Mulugeta, Beyon, Jeffrey Y., Amzajerdian, Farzin, Yu, Jirong, Davis, Richard E., Ismail, ed, Vay, Stephanie, Kavaya, Michael J., and Singh, Upendra N., “Coherent differential absorption lidar measurements of CO2”, Appl. Opt. 43, 50925099 (2004).Google Scholar
5 Fan, T. Y. Huber, G. Byer, R. L. and Mitzscherlich, P.Spectroscopy and diode laserpumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron., 24, 924933(1988).Google Scholar
6 Pinto, J. F. Esterowitz, L. and Rosenblatt, G. H.Tm:YLF laser continuous- ly tunable between 2.20 and 2.46.μm,” Opt. Lett., 19, 883885 (1994).Google Scholar
7 Payne, S. A. Chase, L. L. Smith, L. K. Kway, W. L. and Krupke, W. F.Infrared crosssection measurements for crystals doped with Er,Tm and Ho,” IEEE J. Quantum Electron., 19, 26192630 (1992).Google Scholar
8 Sudesh, V. and Piper, J. A.Spectroscopy, modeling and laser operation of thulium-doped crystals at 2.3 -μm,” IEEE J. Quantum. Electron., 36, 879884 (2000).Google Scholar
9 Fan, T. Y. Huber, G. Byer, R. L. and Mitzscherlich, P.Continuous-wave operation at 2.1 - μm of a diode-laser-pumped, Tm-sensitized Ho:YAG laser at 300K,” Opt. Lett., 12, 7678 (1987).Google Scholar
10 Elder, F. and Payne, M. J.Lasing in diode-pumped Tm:YAP, Tm,Ho:YAP and Tm,Ho:YLF,” Opt. Commun. 145, 329339 (1998).Google Scholar
11 Barnes, N. P. Filer, E. D. Naranjo, F. L. Rodriguez, W. J. and Kokta, M. R.Spectroscopic and lasing properties of Ho:Tm:LuAG,” Opt. Lett. 18, 708710 (1993).Google Scholar
12 Budni, P. A. Knights, M. G. Chicklis, E. P. and Jenssen, H. P.Performance of a diodepumped high PRF Tm, Ho:YLF laser”, IEEE J. Quantum Electron. 28, 10291032 (1992).Google Scholar
13 Jani, M. G. Naranjo, F. L. Barnes, N. P. Murray, K. E. and Lockard, G. E.Diode-pumped long-pulse-length Ho,Tm:YLiF4 laser at 10 Hz,” Opt. Lett. 20, 872874 (1995).Google Scholar
14 Filer, E. D. Morrison, C. A. Barnes, N. P. and Walsh, B. M. “YLF isomorphs for Ho and Tm laser applications”, in Advanced Solid State Lasers, Fan, T. Y. Chai, B. H. eds., Vol.20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), 127130 (1994).Google Scholar
15 Zayhowski, J. J. Harrison, J. Dill, C. III , and Ochoa, J.Tm:YVO4 microchip laser,” Appl. Opt. 34, 435437 (1995).Google Scholar
16 Hauglie-Hanssen, C. and Djeu, N.Further investigations of a 2-μm Tm:YVO4 laser,” IEEE J. Quantum Electron. 30, 275279 (1994).Google Scholar
17 Morris, P. J. Luthy, W. Weber, H. P. Zavartsev, Y. D. Studenikin, P. A. Shcherbakov, I. and Zagumenyi, A. I.Laser operation and spectroscopy of Tm:Ho:GdVO4,” Opt. Commun. 111, 493496 (1994).Google Scholar
18 Wyss, C. P. Luthy, W. Weber, H. P. Vlasov, V. I. Zavartsev, Y. D. Studenikin, P. A. Zagumenyi, A. I., and Shcherbakov, I. A.Performance of a Tm3+:GdVO4 microchip laser at 1.9 μm,” Opt. Commun. 153, 6367 (1998).Google Scholar
19 Wyss, C. P. Luthy, W. Weber, H. P. Vlasov, V. I. Zavartsev, Y. D. Studenikin, P. A. Zagumenyi, A. I., and Shcherbakov, I. A.A diode-pumped 1.4-W Tm3+:GdVO4 microchip laser at 1.9 μm,” IEEE J. Quantum Electron. 34, 23802382 (1998).Google Scholar
20 Wunderlich, J. A. Sliney, J. G. Jr , and Deshazer, L. G.Stimulated emission at 2.04 μm in Ho3+-doped ErVO4 and YVO4,” IEEE J. Quantum Electron. 13, 69 (1977)Google Scholar
21 Armagan, G. Buoncristiani, A. M. Inge, A. T. and DiBartolo, B. “Comparison of spectroscopic properties of Tm and Ho in YAG and YLF crystals,” in Advanced Solid State Lasers, OSA Proc. Ser., 1991, pp.166168.Google Scholar
22 Walsh, B. M. Barnes, N. P. and Bartolo, B. Di, “The temperature dependence of energy transfer between the Tm 3F4 and Ho 5I7 manifolds of Tm-sensitized Ho luminescence in YAG and YLF,” J. Lumin. 90, 3948 (2000).Google Scholar
23 Bensalah, A., Shimamura, K. Sudesh, V. Sato, H. Ito, K. and Fukuda, T.Growth of Tm,Hocodoped YLiF4 and LuLiF4 single crystals for eye-safe lasers,” J. Cryst. Growth 223, 539544 (2001).Google Scholar
24 Sudesh, V. Asai, K. Kudou, A. Ito, K. Shimamura, K. and Fukuda, T., “Growth and characterization of Tm,Ho-doped LuLiF4 and YLiF4 crystals,” in Growth, Fabrication, Devices and Applications of Lasers and Nonlinear Materials, Pierce, J. W. Schaffers, K. I. eds., Proc. SPIE 4268, 153160 (2001).Google Scholar
25 Sato, H. Shimamura, K. Sudesh, V. Ito, M. Machida, H. and Fukuda, T.Growth and characterization of Tm, Ho codoped Lu3A15012 single crystals by the Czochralski technique,” J. Cryst. Growth 234, 463468 (2002).Google Scholar
26 Sudesh, V. Asai, K.Spectroscopic and diode-pumped-laser properties of Tm,Ho:YLF; Tm,Ho:LuLF; and Tm,Ho:LuAG crystals: a comparative study”, J. Opt. Soc. Am. B 20, 18291837 (2003).Google Scholar
27 Sato, K.asai, and Mizutani, Kohei, “Lasing characteristics and optimizations of a diode-sidepumed Tm,Ho:GdVO4 laser”, Opt. Lett. 29, 836838 (2004).Google Scholar
28 Snyder, J. J. Reichert, P. and Baer, T.Fast diffraction-limited cylindrical microlenses,” Appl. Opt., 30, 27432747 (1991).Google Scholar
29 Sudesh, V. Asai, K. Shimamura, K. and Fukuda, T.Room-temperature Tm,Ho:LuLiF4 laser with a novel quasi-end-pumping technique,” Opt. Lett. 26, 16751677 (2001).Google Scholar
30 Sudesh, V. Asai, K. Shimamura, K. and Fukuda, T.Pulsed laser action in Tm,Ho:LuLiF4 and Tm,Ho:YLiF4 crystals using a novel quasi-end -pumping technique,” IEEE J. Quantum Electron. 38, 11021109 (2002).Google Scholar
31 Snyder, J. J. Reichert, P. and Baer, T.Fast diffraction-limited cylindrical micro-lenses,” Appl. Opt., 30, 27432747 (1991).Google Scholar