Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T05:37:11.658Z Has data issue: false hasContentIssue false

A New 3D Multistring Code to Identify Compound Oxide Nanophase With Ion Channeling

Published online by Cambridge University Press:  01 February 2011

James Douglas Bradley
Affiliation:
james.bradley@medtronic.com, Arizona St. University, Department of Physics, PO Box 871504, Tempe, AZ, 85287-1504, United States
Nicole Herbots
Affiliation:
herbots@asu.edu, Arizona St. University, Physics and Astronomy, ASU Dept. of Physics and Astronomy, Box 1530, Tempe, AZ, 85287, United States
Robert Culbertson
Affiliation:
robert.culbertson@asu.edu, Arizona St. University, Department of Physics, PO Box 871504, Tempe, AZ, 85287-1504, United States
Justin Shaw
Affiliation:
justin.shaw@nist.gov, NIST Magnetics Group, Magnetics Group, 325 Broadway, Mailstop 818.03, Boulder, CO, 80305, United States
Vasu Atluri
Affiliation:
vasu.atluri@asu.edu, Arizona St. University, Department of Physics, PO Box 871504, Tempe, AZ, 85287-1504, United States
Get access

Abstract

A new 3DMultiString computer code of Ion Beam Analysis (IBA) using 4He++ ion channeling combined with Nuclear Resonance Analysis (NRA) is used to analyze controlled formation of order in continuous layers of silicon dioxide nucleated on (1×1) Si(100) via the Herbots-Atluri clean (U.S. patent 6,613,677 (9/3/2003)) in air at 300 K. In our most recent work, this new 3DMultiString simulations combined with IBA leads to the identification of a new two-dimensional nanophase of tetragonally distorted β-cristobalite SiO2 (annotated b-c SiO2) with a critical thickness of 2 nm from the (1×1) Si (100)/b-c SiO2 interface to the b-c SiO2 /amorphous SiO2 interface (annotated b-c SiO2/a-SiO2). 3DMultiString simulations of IBA data taken on this new b-c SiO2/(1×1) Si(100) interphase includes channeling along the three <100>, <110>, and <111> axes of Si (100) in combination 16OO(α, α)16O 3.045 MeV NRA to measure oxygen areal densities corresponding to nm-thick films. In this way, the critical thickness of the β-c SiO2 nanophase can be established as a function of oxygen coverage. This new 3DMultiSTRING computer code is derived from the original 3DSTRING program that originated at Bell Labs, NJ.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shuimura, T., Umeno, M., Takahshi, I., and harada, J., Phys. Rev. Lett., 79, 4932 (1997).Google Scholar
2. Fan, G. Y., Cowley, J. M., Spence, J. C. H., Phys. Rev. Lett., 58, 282, (1987).Google Scholar
3. Ourmazd, A., Taylor, D.W., Rentschler, J.A., Beuk, J., Phys. Rev. Lett. 59, 213 (1987).Google Scholar
4. Munkholm, A., Brennan, S., Comin, F., Ortega, L., Phys. Rev. Lett. 75, 4254 (1995).Google Scholar
5. Hirose, K., Nohira, H., Koike, T., Sakano, K., hattori, T., Phys. Rev. B. 59, 5617 (1999).Google Scholar
6. Cheung, N.W, Feldman, L.C., Silverman, P.J., Stensgaard, I., Appl. Phys. Lett., 35, 859 (1979).Google Scholar
7. Renaud, G., Fuoss, P.H., Ourmazd, A., Bevk, J., et al. Appl. Phys. Lett. 58, 1044 (1991).Google Scholar
8. Phillips, J. C., J. Vac. Sci. Technol. B17, 1803 (1999).Google Scholar
9. Herbots, N., Atluri, V., Xiang, J., Bradley, J.D., Banerjee, S., et al, US Patent 6,613, 677 (2003).Google Scholar
10. Herbots, N., Shaw, J.M., Hurst, Q.B., Grams, M.P., Culbertson, R.J., , David, Smith, J., Atluri, V., Zimmerman, P.. Queeney, K.T., Mater. Sci. Eng. B87, 303 (2001).Google Scholar
11. Hurst, Q.B., Herbots, N., Shaw, J.M., Floyd, M.M., Smith, D.J., Culbertson, R.J., Grams, M.P., Bradley, J.D., Zimmerman, P., Atluri, V., Mater. Res. Soc. Symp. Proc. 567, 183 (2000).Google Scholar
12. Herbots, N., Atluri, V., Hurst, Q., Shaw, J.M., Banerjee, S., Bradley, J.D., Culbertson, R.J., Smith, D.J., Mater. Res. Soc. Symp. Proc. 510, 157 (1999).Google Scholar
13. Munkholm, A. and Brennan, S., Phys. Rev. Lett. 93 (3), 036106 (2004).Google Scholar
14. Tatsumura, K., Shimura, T., Mishima, E., et al, Phys. Rev. B. 72, 045205 (2005).Google Scholar
15. Takahashi, I., Shimura, T., Harada, J., J. Phys.: Condens. Matter, 5, 6525 (1993).Google Scholar
16. Fuass, P. H., Norton, L. J., Brennan, S., Fischer-Colbrie, A., Phys. Rev. Lett., 60, 600 (1988).Google Scholar
17. Tatsumura, K., Watanabe, T., Yamasaki, D., et al, Phys. Rev. B. 69, 085212 (2004).Google Scholar
18. Castro-Colin, M., Donner, W., Moss, S.C., Islam, Z., et al, Phys. Rev. B. 71, 045311 (2005).Google Scholar
19. Gossman, H.J., 3DSTRING source code, 1984.Google Scholar
20. Gossman, H.J., 3DSTRING source code, 1987.Google Scholar
21. Bradley, J. D., Ph.D. Thesis, Arizona State University, 2006.Google Scholar
22. Atluri, V., Ph.D. Thesis, University of Arizona, 1998.Google Scholar
23. Queeney, K.T., Weldon, M.K., Chang, J.P., Chabal, Y.J. J. Appl. Phys. 87 (3) 1322 (2000).Google Scholar
24. Queeney, K.T., Herbots, N., Shaw, J., Atluri, V., Chabal, Y.J., Appl. Phys. Lett., 84, 493 (2004).Google Scholar
25. Herbots, N., Bradley, J.D., Shaw, J.M., Culbertson, R.J., Atluri, V., “Ordered & Epitaxial Nanophases of Beta-Cristobalite SiO2 Including Thin & Ultra-thin Films and Interphases on Si(100) Substrate & Applications Thereof”, Technology Disclosure M6-060, Arizona State University, Tempe, Arizona, December 21, 2005.Google Scholar
26. Shaw, J. M., Herbots, N., Hurst, Q. B., Bradley, D., Culbertson, R. J., Atluri, V., J. Appl. Phys., 100, 1 (2006).Google Scholar
27. Shaw, J., Ph.D. Thesis, Arizona State University, 2006.Google Scholar
28. Lenosky, T.J., Chizmeshya, A., Sankey, O.F., “Energetics of Crystalline Silicon Dioxide Interfaces,” Dept. of Energy Presentation, LANL, UCRL-ID-135122 (1999).Google Scholar
29. Feldman, L. C., Mayer, J. W., Picraux, S. T., Fundamentals of Surface and Thin Film Analysis (North-Holland), New York, 1986).Google Scholar
30. Jackman, T.E., MacDonald, J.R., Feldman, L.C., et al, Surf. Sci. 100, 35 (1980).Google Scholar
31. Stedile, F.C., Baumvol, I.J.R., Oppenheim, I.F., et al, Nucl. Instr. Meth. B118, 493 (1996).Google Scholar
32. Atluri, V., Herbots, N., Dagel, D., Bhagvat, S., et al, Nucl. Instr. Meth. B118, 144 (1996).Google Scholar
33. Feldman, L. C., Picraux, S. T., Materials Analysis by Ion Channeling (AP, New York, 1982).Google Scholar
34. Leavit, J. A., McIntyre, L. C. Jr, Ashbaugh, M. D., Oder, J. G., Lin, Z., DezfoulyArjomandy, B., Nucl. Instrum. Methods Phys. Res. B44, 260 (1990).Google Scholar