Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T15:48:46.598Z Has data issue: false hasContentIssue false

Roll-to-Roll Fabrication of Bulk Heterojunction Plastic Solar Cells using the Reverse Gravure Coating Technique

Published online by Cambridge University Press:  01 February 2011

Daniel Tobjork
Affiliation:
dtobjork@abo.fi, Åbo Akademi University, Physics, Porthansgatan 3, Turku, FI-20500, Finland, +358 4 4291 2613
Harri Aarnio
Affiliation:
haarnio@abo.fi, Åbo Akademi University, Department of Physics and Center of Excellence for Functional Materials, Porthansgatan 3, Turku, FI-20500, Finland
Tapio Mäkelä
Affiliation:
Tapio.Makela@abo.fi, Åbo Akademi University, Department of Physics and Center of Excellence for Functional Materials, Porthansgatan 3, Turku, FI-20500, Finland
Ronald Österbacka
Affiliation:
rosterba@abo.fi, Åbo Akademi University, Department of Physics and Center of Excellence for Functional Materials, Porthansgatan 3, Turku, FI-20500, Finland
Get access

Abstract

The roll-to-roll reverse gravure (RG) coating technique was used to produce thin homogeneous films (∼100 nm) for organic bulk heterojunction solar cells. The conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and the active layer regioregular poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) were successfully subsequently RG coated on an ITO covered plastic substrate in ambient air. Working solar cells were achieved after annealing and thermal evaporation of the top contact. The AM1.5 power conversion efficiency (PCE) of the RG coated organic solar cells was determined to 0.74% (at 100 mW/cm2). This was very similar to the results of a reference device that was spin coated on a glass substrate in a nitrogen glove box.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hoth, C.N., Choulis, S. A., Schilinsky, P. and Brabec, C. J., Adv. Mater. 19, 3973 (2007).Google Scholar
2. Aernouts, T. Aleksandrov, T. Girotto, C. Genoe, J. and Poortmans, J. Appl. Phys. Lett. 92, 033306 (2008).Google Scholar
3. Shaheen, S. E., Radspinner, R. Peyghambarian, N. and Jabbour, G. E., Appl. Phys. Lett. 79, 2996 (2001).Google Scholar
4. Schilinsky, P. Waldauf, C. and Brabec, C. J., Adv. Funct. Mat. 16, 1669 (2006).Google Scholar
5. Hewson, R. W., Kapur, N. Gaskell, P.H., Chem. Eng. Sci. 61, 5487 (2006).Google Scholar
6. Kaihovirta, N.J. , Tobjörk, D., Mäkelä, T., and Österbacka, R., Adv. Eng. Mat. (2008) in press.Google Scholar
7. Yu, G. Gao, J. Hummelen, J. C., Wudl, F. and Heeger, A. J., Science 270, 1789 (1995).Google Scholar
8. Juka, G. Arlauskas, K. Viliunas, M. and Koèka, J., Phys. Rev. Lett. 84, 4946 (2000).Google Scholar
9. Sylvester-Hvid, K. O., Ziegler, T. Riede, M. K., Keegan, N. Niggermann, M. and Gombert, A. J. Appl. Phys. 102, 054502 (2007).Google Scholar
10. Kim, J. Y., Kim, S. H., Lee, H.H., Lee, K. Ma, W. Gong, X. Heeger, A. J., Adv. Mater. 18, 572 (2006).Google Scholar
11. Tvingstedt, K. and Inganäs, Olle, Adv. Mater. 19, 2893 (2007).Google Scholar